Issue 6, 2025

Neural ordinary differential equations for predicting the temporal dynamics of a ZnO solid electrolyte FET

Abstract

Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20–240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits.

Graphical abstract: Neural ordinary differential equations for predicting the temporal dynamics of a ZnO solid electrolyte FET

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2024
Accepted
06 Dec 2024
First published
07 Dec 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2025,13, 2804-2813

Neural ordinary differential equations for predicting the temporal dynamics of a ZnO solid electrolyte FET

A. Gaurav, X. Song, S. K. Manhas and M. M. De Souza, J. Mater. Chem. C, 2025, 13, 2804 DOI: 10.1039/D4TC03696D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements