Structural engineering of glass for regulating chemical surroundings of dopants
Abstract
Optical gain materials activated by dopants are playing pivotal roles in fiber amplifiers, solid-state lasers and biological imaging. Achieving high photoluminescence (PL) efficiency in a stable matrix by regulating the chemical surroundings of dopants in an inert glass matrix remains a challenge. Here, we report a novel method for regulating the chemical surroundings of dopants by modulating the network structure of the glass matrix, achieving regulation of dopant PL efficiency. The luminescent properties of glass were adjusted not only by altering its composition, but also more importantly by controlled nanocrystallization. Furthermore, by utilizing lattice-site substitution engineering, the spectral shape and PL efficiency of active centers can be regulated by controlling the method of cation substitution at sub-nanometer scale.
- This article is part of the themed collection: Rare Earth Materials