Investigation of the configurational stability of lithiated phosphine oxides using diastereomerically pure and enantiomerically enriched phosphine oxides

(Note: The full text of this document is currently only available in the PDF Version )

Peter O'Brien and Stuart Warren


Abstract

Lithiation of racemic but diastereomerically pure phosphine oxides followed by electrophilic quench indicates that lithiated phosphine oxides are not configurationally stable over a period of minutes in THF at –78 °C. These results have been verified using an optically active phosphine oxide: lithiation and in situ quench experiments with Me3SiCl and cyclobutanone indicate that the lithium derivatives are not configurationally stable even on the timescale of their reaction with these electrophiles.


References

  1. J. Clayden and S. Warren, Angew. Chem., Int. Ed. Engl., 1996, 35, 241 CrossRef CAS.
  2. Preliminary communication: P. O'Brien and S. Warren, Tetrahedron Lett., 1995, 36, 8473 Search PubMed.
  3. S. E. Denmark and R. L. Dorow, J. Am. Chem. Soc., 1990, 112, 864 CrossRef CAS; S. E. Denmark, P. C. Miller and S. R. Wilson, J. Am. Chem. Soc., 1991, 113, 1468 CrossRef CAS . For some ab initio calculations, see: C. J. Cramer, S. E. Denmark, P. C. Miller, R. L. Dorow, K. A. Swiss and S. R. Wilson, J. Am. Chem. Soc., 1994, 116, 2437 Search PubMed.
  4. W. Zarges, M. Marsch, K. Harms, F. Haller, G. Frenking and G. Boche, Chem. Ber., 1991, 124, 861 CAS.
  5. F. López-Ortiz, E. Peláez-Arango, B. Tejerina, E. Pérez-Carreño and S. García-Granda, J. Am. Chem. Soc., 1995, 117, 9972 CrossRef CAS; R. Koch and E. Anders, J. Org. Chem., 1995, 60, 5861 CrossRef CAS.
  6. D. R. Armstrong, D. Barr, M. G. Davidson, G. Hutton, P. O'Brien, R. Snaith and S. Warren, J. Organomet. Chem., 1996, in the press Search PubMed.
  7. Theoretical calculations suggested a similar four-membered LiOSC ring structure for lithiated sulfones but X-ray crystallography demonstrated that this was not the case: S. Wolfe, L. A. La John and D. F. Weaver, Tetrahedron Lett., 1984, 25, 2863 Search PubMed; G. Boche, Angew. Chem., Int. Ed. Engl., 1989, 28, 277 CrossRef CAS.
  8. S. E. Denmark and R. L. Dorow, J. Org. Chem., 1990, 55, 5926 CrossRef CAS.
  9. D. J. Cram and R. D. Partos, J. Am. Chem. Soc., 1963, 85, 1093 CrossRef CAS.
  10. D. J. Cram, R. D. Trepka and P. St Janiak, J. Am. Chem. Soc., 1964, 86, 2731 CrossRef CAS.
  11. D. J. Cram, in Fundamentals of Carbanion Chemistry, Academic Press, New York, 1965; Search PubMed; N. S. Simpkins, in Sulfones in Organic Synthesis, Pergamon Press, Oxford, 1993. Search PubMed.
  12. For some examples, see: W. C. Still and C. Sreekumar, J. Am. Chem. Soc., 1980, 102, 1201 Search PubMed; R. W. Hoffman, M. Julius and K. Oltmann, Tetrahedron Lett., 1990, 31, 7419 CrossRef CAS; H.-J. Gais and G. Hellmann, J. Am. Chem. Soc., 1992, 114, 4439 CrossRef CAS; K. Brickmann and R. Brückner, Chem. Ber., 1993, 126, 1227 CrossRef CAS.
  13. P. F. Cann, D. Howells and S. Warren, J. Chem. Soc., Perkin Trans. 2, 1972, 304 RSC.
  14. P. O'Brien and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1996, 2129 RSC.
  15. Fleming has previously reported some stereoselective methylations of lithium derivatives of chiral phosphine oxides: I. Fleming, S. Gil, A. K. Sarkar and T. Schmidlin, J. Chem. Soc., Perkin Trans. 1, 1992, 3351 Search PubMed.
  16. E. C. Ashby, R. Gurumurthy and R. W. Ridlehuber, J. Org. Chem., 1993, 58, 5832 CrossRef CAS.
  17. W. H. Pirkle, D. L. Sikkenga and M. S. Pavlin, J. Org. Chem., 1977, 42, 384 CrossRef CAS.
  18. E. J. Corey and A. W. Gross, Tetrahedron Lett., 1984, 25, 495 CrossRef CAS.
  19. B. H. Lipshutz, M. R. Wood and C. W. Lindsley, Tetrahedron Lett., 1995, 36, 4385 CrossRef CAS.
  20. D. Seebach and T. Weber, Tetrahedron Lett., 1983, 24, 3315 CrossRef CAS . For some related examples, see: D. Seyferth, R. M. Weinstein and W-L. Wang, J. Org. Chem., 1983, 48, 1144 Search PubMed; A. Alexakis, T. Kanger, P. Mangeney, F. Rose-Munch, A. Perrotey and E. Rose, Tetrahedron: Asymmetry, 1995, 6, 2135 CrossRef CAS.
  21. C. Guéguen, P. O'Brien, S. Warren and P. Wyatt, J. Organomet. Chem., 1996, in the press Search PubMed.
  22. By achiral electrophile, we mean electrophiles that are neither chiral nor prochiral. Thus, benzaldehyde is described as a prochiral electrophile whereas cyclobutanone is described as an achiral electrophile. For a discussion of these terms, see: E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Organic Compounds, John Wiley & Sons Inc., 1994, p. 465; Search PubMed; K. Mislow and J. Siegel, J. Am. Chem. Soc., 1984, 106, 3319 Search PubMed.
  23. J. Vidal and F. Huet, J. Org. Chem., 1988, 53, 611 CrossRef CAS.
  24. R. Hirsch and R. W. Hoffman, Chem. Ber., 1992, 125, 975 CAS; R. W. Hoffman, M. Julius, F. Chemla, T. Ruhland and G. Frenzen, Tetrahedron, 1994, 50, 6049 CrossRef CAS.
  25. P. O'Brien and S. Warren, Tetrahedron Lett., 1996, 37, 4271 CrossRef CAS.
  26. A. Nelson and S. Warren, Tetrahedron Lett., 1996, 37, 1501 CrossRef CAS . For some other examples, see: N. Feeder, G. Hutton and S. Warren, Tetrahedron Lett., 1994, 35, 5911 Search PubMed.
  27. P. O'Brien and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1996, 2117 RSC.
  28. W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923 CrossRef CAS.
  29. A. Streitwieser Jr and W. D. Schaffer, J. Am. Chem. Soc., 1956, 78, 5597 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.