Atsuhiro
Nakahara
ab,
Kotaro
Satoh
a and
Masami
Kamigaito
*a
aDepartment of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan. E-mail: kamigait@apchem.nagoya-u.ac.jp
bKurashiki Research Centre, Kuraray Co. Ltd, 2045-1, Sakazu, Kurashiki, Okayama, 710-0801, Japan
First published on 9th November 2011
A series of random copolymers of styrene and diene derivatives prepared by living anionic copolymerization, using tetrahydrofuran (THF) as a randomizer, were treated with various Brönsted and Lewis acids to cationically cyclize the adjacent diene–styrene units into tetrahydronaphthyl bicyclic main-chain structures via intramolecular Friedel–Crafts alkylation. This reaction produced high-performance plastics with a high glass transition temperature and robust mechanical properties. Of the various Friedel–Crafts catalysts, CF3SO3H and BF3·2AcOH/benzyl chloride proved to be the most efficient in terms of their reactivity and product selectivity. All of the random styrene–diene-based copolymers, including styrene–isoprene (r-SIR), styrene–butadiene (r-SBR), p-methylstyrene–isoprene (r-pMSIR), and styrene–isoprene–butadiene (r-SIBR) copolymers, underwent efficient intramolecular cyclization by CF3SO3H despite the different monomer units and microstructures of the diene units, and yielded high-performance plastics (Tg ≥ 130 °C). The Tg value of the cyclized r-SBR was slightly lower than the Tg values observed for r-SIR and r-pMSIR. The cyclized random copolymers exhibited relatively high flexural moduli and more strength than the polystyrenehomopolymer. Thus, the styrene–diene-based random copolymer provides a novel platform for the production of high-performance thermoplastics that can be easily prepared from commercially available styrene and diene derivatives via living anionic polymerization followed by Friedel–Crafts alkylation.
In recent years, amorphous cyclic hydrocarbonpolymers possessing rigid cyclic structures in the main chain have been employed as optically transparent materials (especially in optoelectronics) due to their non-hygroscopic nature, good thermal properties, and transparency.1 In addition to the polymerization or copolymerization of cyclic olefin monomers, the intramolecular cyclization between the pendent and/or adjacent functional groups in the main chain, such as the cyclization of unsaturated hydrocarbonpolymers under acidic conditions, is one of the most efficient methods for preparing amorphous hydrocarbonpolymers with cyclic units in the main chain.2–6Cyclization has been extensively studied for soft elastomers based on poly(dienes), such as natural rubber,2 synthetic polyisoprene,3 polybutadiene,4 and their copolymers with styrene, resulting in brittle, amber-colored plastics.5,6
Recently, we found that random copolymers of styrene and isoprene (r-SIR) prepared by living anionic copolymerization can be converted to cycloolefincopolymer analogues with high Tg's via the well-controlled cyclization of random copolymers.7 The sequence composition of the two monomers in the r-SIR was tuned to be nearly equimolar and random, with specific operation-delaying monomer-mixture feeds during living anionic polymerization in the presence of a small amount of THF as the randomizer. The subsequent cationic cyclization of the rubbery r-SIR (Tg = 20 °C) with a strong Brönsted acid (i.e., CF3SO3H) resulted in a polymer with a relatively high Tg (Tg = 130 °C). This high Tg is most likely due to the formation of rigid tetrahydronaphthyl bicyclic structures via intramolecular Friedel–Crafts alkylation, in which the protonated isoprene units predominantly reacted with the ortho position of the benzene ring of the adjacent styrene unit formed viarandom copolymerization.
In this study, we examined the CF3SO3H-induced intramolecular Friedel–Crafts cyclization of a series of styrene–diene-based random copolymers, including styrene–butadiene (r-SBR), p-methylstyrene–isoprene (r-pMSIR), and styrene–isoprene–butadiene (r-SIBR) copolymers and r-SIR with various microstructures prepared by living anionic copolymerizations (Scheme 1). In addition, Brönsted and Lewis acids were also employed as catalysts for the intramolecular Friedel–Crafts reaction with r-SIR.8 The combination of a Lewis acid with a Brönsted acid or an alkyl halide as the cationogen proved to be highly efficient, which is consistent with previous reports using living cationic polymerization.9 The mechanical properties of the obtained cycloolefincopolymer analogues were evaluated as thermoplastics and compared to commercially available polystyrene, which exhibits a lower Tg.
![]() | ||
Scheme 1 Living anionic copolymerization of 1,3-diene and styrene derivatives, and subsequent intramolecular Friedel–Crafts cationic cyclization of the copolymer. |
The cationic cyclizations of the obtained r-SIR were then examined in cyclohexane or toluene at several temperatures with moderate polymer concentrations, using various Brönsted acids whose Hammett acidity functions (H0) were −14.1 (CF3SO3H), −13.8 (ClSO3H), −12 (H2SO4), −7.86 (CH3SO3H), −2.7 (CF3COOH), and less than −2.7 (CCl3COOH) (Table 1).12 Consistent with previous work, trifluoromethanesulfonic acid (CF3SO3H) efficiently induced the reaction of the CC double bond to afford the cyclized products, which were completely soluble in THF without gelation, indicating that the Friedel–Crafts reaction predominately occurred between the C
C double bond of the isoprene unit and the phenyl group of the adjacent styrene units (entries 1–8 in Table 1). The consumption of the olefinic protons was evaluated based on a decrease in the peak intensity ratios of the
CH protons compared to all of the polymer peaks for r-SIR. The high CF3SO3H concentration or reaction temperature resulted in more C
C double bonds being consumed. Under these conditions, the SEC curves exhibited broader MWDs with small peaks in the higher-molecular-weight regions, indicating that a small amount of product was formed by the intermolecular linking reaction. In addition, weaker Brönsted acids were inactive or less active in cyclohexane, even at higher concentrations. However, when the reaction was performed in toluene, which has a dielectric constant that is slightly higher than that of cyclohexane, ClSO3H and H2SO4 induced cyclization, but with less C
C bond consumption. Although toluene might participate in the Friedel–Crafts reaction, almost no effects were observed on the 1H NMR spectra as well as the properties of the products most probably due to the predominant intramolecular cyclization. These results indicate that a high acidity (H0 < −12) is necessary for the efficient cationic cyclization of r-SIR, and that superacids with H0 < −14.1 are effective even in non-polar solvents, such as cyclohexane.
Entry | Catalyst | [Catalyst]0/mM | Solv.b | Temp./°C | C![]() |
M n | M w/Mnd | Intermolecular-linkinge (%) | T g /°C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a The cyclization was carried out for 1 h (except for entry 4: reaction time = 0.5 h): [r-SIR]0 = 3.2 wt%. The r-SIRcopolymers were prepared by anionic living copolymerization; r-SIR-1 (Fst = 48%, Mn = 119![]() ![]() ![]() ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | CF3SO3H | 0.4 | CHx | 23 | 38 | 104![]() |
1.10 | 2 | 47 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | CF3SO3H | 1.9 | CHx | 23 | 91 | 66![]() |
1.60 | 19 | 130 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | CF3SO3H | 1.9 | CHx | 23 | 92 | 76![]() |
1.55 | 19 | 129 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | CF3SO3H | 1.9 | Tol | 23 | 90 | 79![]() |
1.29 | 15 | 129 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | CF3SO3H | 19 | CHx | 23 | 99 | 25![]() |
2.18 | >20 | 152 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | CF3SO3H | 0.4 | CHx | 23 | 72 | 82![]() |
1.32 | 7 | 81 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | CF3SO3H | 0.4 | CHx | 40 | 80 | 79![]() |
1.40 | 10 | 102 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | CF3SO3H | 0.4 | CHx | 70 | 87 | 63![]() |
1.76 | 12 | 120 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | ClSO3H | 8.3 | Tol | 40 | 10 | 36![]() |
2.20 | 3 | 42 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | ClSO3H | 8.3 | CHx | 40 | ∼0 | 112![]() |
1.04 | — | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | H2SO4 | 8.3 | Tol | 40 | 19 | 55![]() |
1.66 | 11 | 43 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | CH3SO3H | 8.3 | Tol | 40 | ∼0 | 112![]() |
1.04 | — | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | CF3COOH | 8.3 | Tol | 40 | ∼0 | 112![]() |
1.04 | — | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 | CCl3COOH | 8.3 | Tol | 40 | ∼0 | 112![]() |
1.04 | — | 20 |
The thermal properties of the obtained products were also evaluated by DSC, which showed that all of the cyclized products exhibited a single glass transition peak, suggesting the formation of random copolymers. As the consumption of the CC bonds increased, the Tg's of the copolymers increased from the ambient temperature (16–20 °C) to above 100 °C (Table 1). The highest concentration of CF3SO3H led to the highest Tg for the cyclized r-SIR at 152 °C (entry 5), which is predominantly due to the intramolecular cyclization between the C
C bond in the isoprene units and adjacent the aromatic ring of the styrene units, resulting in the formation of a bicyclic tetrahydronaphthyl unit in the backbone chain.
In general, Lewis acids are also used for both Friedel–Crafts reactions and cationic polymerizations.9,13 A series of Lewis acids, including AlCl3, TiCl4, FeCl3, SnCl4, ZnCl2, and BF3 complexes, was also used as the catalyst for the cyclization of r-SIR (Table 2). However, most of the Lewis acid catalysts were not effective in cyclohexane, due to the non-polar solvent and the low protogen content of anhydrous cyclohexane, which generally contains approximately 5 ppm of water (entries 1–6). In contrast, BF3 complexes with protic molecules, such as phenol (BF3·2PhOH), induced CC bond consumption, yielding cyclized r-SIR with a relatively high Tgvia Friedel–Crafts alkylation (entry 7 and 8). In contrast to BF3·2PhOH, which was effective in cyclohexane, the acetic acid complex (BF3·2CH3COOH) was ineffective for the cyclization of r-SIR in cyclohexane but was effective in toluene. In addition, when coupled to benzyl chloride (BzCl), cyclization occurred more effectively with the boron complexes (entries 9, 12, 13, and 14) because BzCl acts as a cationogen in the presence of Lewis acids to generate the benzyl cation.6 In the BF3/BzCl system, the cyclization of r-SIR proceeded well and yielded cyclized r-SIR with less content from intermolecular-linking reactions and a relatively narrow MWD, even under high C
C bond conversion conditions. This result is due to the residual carbocationic species in the protonated isoprene units being capped with the chloride anions derived from BzCl to suppress the intermolecular reaction.
Entry | Catalyst | [Catalyst]0/mM | Solv.b | Temp./°C | C![]() |
M n | M w/Mnd | Intermolecular-linkinge (%) | T g /°C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a The cyclization was carried out for 1 h: [r-SIR]0 = 3.2 wt%. The r-SIR copolymers were prepared by anionic living copolymerization; r-SIR-2 (Fst = 48%, Mn = 112![]() ![]() ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | AlCl3 | 1.9 | CHx | 23 | ∼0 | 128![]() |
1.05 | — | 19 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | TiCl4 | 1.9 | CHx | 23 | ∼0 | 128![]() |
1.05 | — | 19 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | FeCl3 | 1.9 | CHx | 23 | ∼0 | 128![]() |
1.05 | — | 19 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | SnCl4 | 12 | CHx | 50 | ∼0 | 112![]() |
1.04 | — | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | ZnCl2 | 10 | CHx | 50 | ∼0 | 112![]() |
1.04 | — | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | BF3·Et2O | 22 | CHx | 50 | ∼0 | 112![]() |
1.04 | — | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | BF3·2PhOH | 3.3 | CHx | 50 | 41 | 98![]() |
1.11 | 7 | 58 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | BF3·2PhOH | 7.5 | CHx | 50 | 74 | 82![]() |
1.30 | 16 | 105 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | BF3·2PhOH/BzClg | 7.5 | CHx | 50 | 83 | 94![]() |
1.33 | 10 | 112 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | BF3·2AcOH | 7.5 | CHx | 40 | ∼0 | 112![]() |
1.04 | — | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | BF3·2AcOH | 6.2 | Tol | 40 | 71 | 85![]() |
1.33 | 7 | 83 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | BF3·2AcOH/BzClg | 7.5 | CHx | 40 | ∼0 | 112![]() |
1.04 | — | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | BF3·2AcOH/BzClg | 6.2 | Tol | 40 | 79 | 86![]() |
1.14 | 8 | 117 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 | BF3·2AcOH/BzClg | 12.5 | Tol | 40 | 81 | 78![]() |
1.26 | 10 | 120 |
Fig. 1 shows the Tg values of the cyclized copolymers obtained with various catalysts as a function of the consumption of the CC double bonds in the r-SIR. In all of the cases, the Tg of the copolymers gradually increased from 20 °C to 150 °C as the C
C double bonds were consumed. In the BF3/BzCl system, the potential production of cyclized r-SIR containing benzyl units may affect the thermal properties of the resulting polymers. In the BF3/BzCl system, the cyclization was triggered by generating benzyl cation to result in the cyclized r-SIR contained benzyl units, which was also confirmed by 1H NMR (Fig. S1 in the ESI†). However, there are no significant differences in Tg values of the resulting polymers, suggesting that the initial loading of BzCl (1 wt % with respect to r-SIR) was too small to affect these properties. Thus, the intramolecular cyclization of r-SIR was efficiently catalyzed by both superacidic Brönsted acids and Lewis acids to yield soluble cycloolefincopolymer analogues with high glass transition temperatures (Tg's) containing bicyclic tetrahydronaphthyl units in the backbone chain.
![]() | ||
Fig. 1 Glass transition temperature (Tg) of cyclized r-SIR obtained with various acidic catalysts as the function of C![]() |
Entry | Prepolymer (before cyclization)a | After cyclizationb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copolymers | F st (mol%) | F Ip (mol%) | F Bd (mol%) | M n | M w/Mnd | Microstructure in dienec (%) | C![]() |
M n | M w/Mnd | Intermol. linkingd (%) | T g /°C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1,4 | 1,2 | 3,4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a Anionic living copolymerization was performed with sec-butyllithium in the presence of THF in cyclohexane at 40 °C; see also the Experimental section.
b
Cyclization was carried out with CF3SO3H in cyclohexane for 1 h at 23 °C: [prepolymer]0 = 3.2 wt%, [CF3SO3H]0 = 1.9 mM.
c Determined from the ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | r-SIR50-1 | 48 | 52 | — | 112![]() |
1.04 | 67 | 1 | 32 | 92 | 76![]() |
1.55 | 19 | 129 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | r-SIR50-2 | 48 | 52 | — | 111![]() |
1.05 | 86 | 1 | 13 | 81 | 84![]() |
1.68 | 30 | 113 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | r-SIR50-3 | 48 | 52 | — | 131![]() |
1.04 | 46 | 6 | 48 | 77 | 102![]() |
1.34 | 19 | 106 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | r-SBR50 | 48 | — | 52 | 113![]() |
1.04 | 76 | 24 | — | 14f | 111![]() |
1.11 | 7 | 23 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | r-SBR50 | 48 | — | 52 | 113![]() |
1.04 | 76 | 24 | — | 100f,g | 71![]() |
2.22 | 41 | 134 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | r-SBR70 | 69 | — | 31 | 117![]() |
1.03 | 90 | 10 | — | 100f,g | 98![]() |
1.24 | 15 | 113 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | r-SIBR50 | 46h | 42h | 12h | 145![]() |
1.04 | n.d. | n.d. | n.d. | 54 | 110![]() |
1.43 | 22 | 91 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | r-pMSIR50 | 52 | 48 | — | 107![]() |
1.05 | 68 | 2 | 30 | 91 | 55![]() |
1.52 | 12 | 130 |
The randomness of the sequence of isoprene and styrene and the microstructures of the isoprene units were controlled by changing the loading concentration of THF during anionic copolymerization (entries 1–3). The obtained r-SIRcopolymers exhibited various microstructures with 1,4-regiospecificities in the isoprene units that decreased with increasing THF concentrations (1,4-: 1,2-: 3,4- = 46–86: 1–6: 13–48). In all of the cases, the obtained copolymers had relatively high and controlled molecular weights (Mn > 105) and narrow MWDs (Mw/Mn < 1.1), irrespective of the differences in the microstructures. Furthermore, the cyclization of the obtained r-SIR copolymers proceeded well with CF3SO3H as the catalyst to afford the cyclized copolymers with relatively high Tg independent of the microstructure. This result is most likely due to the adjacent units of isoprene and styrene producing a bicyclic structure, irrespective of the regiostructure of the isoprene unit, resulting in products with high Tg's, as shown in Scheme 1 and Fig. S2 in the ESI†.
Using a similar procedure, r-SBR, r-SIBR, and r-pMSIR were also prepared via living anionic polymerization (entries 4–8). In all of the cases, copolymerizationvia the incremental and continuous addition of the monomer solutions in the presence of THF afforded the copolymers with well-controlled molecular weights and MWDs, although the microstructure of the r-SIBR terpolymers could not be determined due to the complexity of the 1H NMR spectra. All of the obtained copolymers exhibited relatively low Tg's ranging from −10 to 20 °C, which are consistent with the values reported in the literature. Next, the cyclization of the obtained copolymers was examined using CF3SO3H in cyclohexane at an ambient temperature. The reactions of r-SBR and r-SIBR proceeded more slowly than that of r-SIR under the same conditions (Table 3, entries 1 and 4), whereas r-pMSIR exhibited almost the same reactivity as r-SIR (entry 8). Furthermore, r-SBR exhibited a greater tendency to undergo intermolecular linking-induced gelation compared to r-SIR, and a dilute solution of CF3SO3H in CH2Cl2 was required to avoid gelation. Consequently, the reaction of r-SBR yielded a cyclized copolymervia a CH2Cl2 solution with a higher CF3SO3H content (entry 5). These results indicate that the protonation of the diene units plays a pivotal role in cationic cyclization. The CC double bonds in the isoprene units, which generate tertiary carbocationic species, induce effective cyclizationvia an intramolecular Friedel–Crafts reaction, while the C
C double bonds in the 1,3-butadiene units, which generate more reactive secondary cations, are less reactive but can induce intermolecular linking reactions with lower selectivity under relatively rigorous conditions. Similar efficient intramolecular cyclizations of low molecular weight compounds via tertiary carbocationic species were also reported in Friedel–Crafts chemistry.14 The methyl substituent in the isoprene unit would also contribute to more effective cyclization due to the formation of sterically favored 6-endo-trig-like conformation.
Fig. 2 shows the SEC curves of the copolymers of r-SIR, r-SBR, and r-pMSIR, which have comonomer compositions of approximately 1:
1 (styrene
:
isoprene, styrene
:
1,3-butadiene, and p-methylstyrene
:
isoprene = 48
:
52, 48
:
52, and 52
:
48, respectively). Fig. 2 also shows their cyclized products that are formed using CF3SO3H. In all of the cases, the main peaks shifted toward lower molecular weights after the cyclization reactions due to the reduction in the hydrodynamic volume that occurs upon cyclization. This result was confirmed by the fact that the absolute molecular weight of the main peak, which is obtained by light scattering, did not change during cyclization in our previous work.7 In addition, the small peaks in the higher-molecular-weight region resulted from some intermolecular linking and/or cross-linking reactions, which were observed for r-SIR and r-SBR. In particular, the SEC curves for the cyclization of r-SBR exhibited a higher ratio for the intermolecular linking reaction compared to the cyclization of r-SIR. In addition, r-pMSIR underwent less intermolecular linking because the intermolecular Friedel–Crafts alkylation between the different polymer chains barely occurred on the phenyl group of the p-substituted styrene unit. Although the intermolecular cross-linking reaction might also increase the Tg of the products, such effects were not observed in our case,7 at least for the soluble products with low cross-linking contents. The peaks in the lower-molecular-weight region were most likely caused by long-range intramolecular Friedel–Crafts reaction to form macrocyclic chain and/or cleavage of the main chain via β-scission between the adjacent styrene and diene units to form a styryl cation and a terminal C
C double bond (see also Fig. S2 in the ESI†).
![]() | ||
Fig. 2 Size-exclusion chromatograms for intramolecular Friedel–Crafts cationic cyclization of (A) r-SIR (entry 1 in Table 3), (B) r-SBR (entry 5 in Table 3), and r-pMSIR (entry 8 in Table 3) with CF3SO3H in cyclohexane at 23 °C: [copolymer]0 = 3.2 wt%, [CF3SO3H]0 = 1.9 (for r-SIR and r-pMSIR) or 19 mM (for r-SBR). |
Fig. 3 shows the 1H NMR spectra of the various random copolymers and their cyclized products from the post-polymerization reactions. Before the cyclization of the copolymers, their spectra showed the typical signals for the random styrene–isoprene, styrene–1,3-butadiene, and p-methylstyrene–isoprene copolymers, in which the signals at 3.8–5.7 ppm were assigned to the olefinic protons of the isoprene and 1,3-butadiene units. After the cyclization reactions, the double-bond signals dramatically decreased, and the peaks of the aromatic protons at 6.0–7.5 ppm became broader in all of the cases. These results indicate that cyclization most likely proceeded between the CC double bond of the diene unit and the phenyl group of the adjacent styrene unit via the Friedel–Crafts reaction and independent of the monomer structures.
![]() | ||
Fig. 3 1H NMR spectra (CDCl3, 25 °C) of r-SIR (entry 1 in Table 3) before (A) and after cyclization (B), r-SBR (entry 5 in Table 3) before (C) and after cyclization (D), and r-pMSIR (entry 8 in Table 3) before (E) and after cyclization (F) using CF3SO3H in cyclohexane at 23 °C: [copolymer]0 = 3.2 wt%, [CF3SO3H]0 = 1.9 (for r-SIR and r-pMSIR) or 19 mM (for r-SBR). |
![]() | ||
Fig. 4 Glass transition temperature (Tg) of cyclized r-SIR (filled circles), r-SBR (blue circles), and r-pMSIR (red circles) obtained with CF3SO3H as C![]() |
The mechanical properties of the obtained cyclized copolymers were also evaluated via the flexural testing of the hot-press-molded samples (Table 4). Both the cyclized r-SIR and the cyclized r-SBR exhibited relatively high flexural moduli and greater strengths compared to the polystyrenehomopolymer. In particular, the cyclized r-SBR exhibited superior impact strength as determined by the IZOD impact test, which is most likely due to the flexible butadiene units. Thus, the mechanical properties of the cyclized copolymers were comparable to those of the polystyrenehomopolymer, but the cyclized copolymers exhibited superior thermal properties.
Polymer | M n | M w/Mnd | C![]() |
T g /°C | Flexural modulusg/MPa | Flexural strengthg/MPa | IZOD impact strength (unnotched)h/kJ m−2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Cyclized r-SIR (entry 2 in Table 1).
b Cyclized r-SBR (entry 5 in Table 3).
c Prepared by free radical polymerization of styrene.
d The number-average molecular weight (Mn) and distribution (Mw/Mn) were determined by size-exclusion chromatography against PSt standards.
e Determined from the ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cyclized r-SIRa | 66![]() |
1.60 | 91 | 130 | 3200 | 89 | 9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cyclized r-SBRb | 71![]() |
2.22 | 100 | 134 | 2900 | 100 | 14 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Polystyrene c | 83![]() |
2.23 | — | 100 | 3400 | 72 | 10 |
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c1py00433f |
This journal is © The Royal Society of Chemistry 2012 |