With the purpose of providing some clues that could encourage the spectral recordings of propane and various monodeuterated and 13C isotopologues and also to explore their far infrared spectra at low temperatures, the energy levels corresponding to their three lowest frequency modes are determined variationally using a flexible model in three dimensions. Five vibrationally corrected potential energy surfaces are computed using CCSD(T) ab initio calculations. In spite of the quality of these highly correlated potentials in molecules with similar structures, it was proven that an empirical adjustment of the surfaces would enclose accurately the experimental and theoretical frequency residuals and therefore it is also used in the present work. Interacting terms, energy levels and tunneling splittings are provided for CH3CH2CH3, CH313CH2CH3, 13CH3CH2CH3, CH2DCH2CH3 and CH3CHDCH3. Infrared and Raman transitions of CH3CH2CH3 are assigned. Correlation between symmetry species of the five isotopologue symmetry groups (G36, G36, G18, G6 and , respectively) is established for the classification of the levels and torsional splittings. The rotational constants are determined with CCSD(T)/CBS (A0 = 29263.46 MHz, B0 = 8454.10 MHz and C0 = 7466.64 MHz) using a non-relativistic procedure. Fundamental anharmonic frequencies corresponding to the high and medium amplitude modes are computed for all the isotopologues. The adjusted parameters are accurate enough to be employed in further spectral analysis.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?