Issue 4, 2013

DNA origami templated self-assembly of discrete length single wall carbon nanotubes

Abstract

Constructing intricate geometric arrangements of components is one of the central challenges of nanotechnology. Here we report a convenient, versatile method to organize discrete length single-walled carbon nanotubes (SWNT) into complex geometries using 2D DNA origami structures. First, a size exclusion HPLC purification protocol was used to isolate uniform length, SWNTs labelled with single stranded DNA (ssDNA). The nanotube-bound ssDNAs are composed of two domains: a SWNT binding domain and a linker binding domain. Although initially bound to the SWNTs, the linker domain is displaced from the surface by the addition of an external ssDNA linker strand. One portion of the linker strand is designed to form a double helix with the linker binding domain, compelling the DNA to project away from the SWNT surface. The remainder of the linker strand contains an ssDNA origami recognition sequence available for hybridization to a DNA origami nanostructure. Two different 2D DNA origami structures, a triangle and a rectangle, were used to organize the nanotubes. Several arrangements of nanotubes were constructed, with defined tube lengths and inter-tube angles. The uniform tube lengths and positional precision that this method affords may have applications in electronic device fabrication.

Graphical abstract: DNA origami templated self-assembly of discrete length single wall carbon nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
03 Oct 2012
Accepted
16 Nov 2012
First published
03 Dec 2012

Org. Biomol. Chem., 2013,11, 596-598

DNA origami templated self-assembly of discrete length single wall carbon nanotubes

Z. Zhao, Y. Liu and H. Yan, Org. Biomol. Chem., 2013, 11, 596 DOI: 10.1039/C2OB26942B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements