Issue 33, 2013

Advanced porous carbon electrodes for electrochemical capacitors

Abstract

It is not an exaggeration to say that successful development of any renewable energy source (e.g., windmills and solar cells), hybrid and electric vehicles, and smart grids depends significantly upon the availability of a suitable energy storage system. Electrochemical capacitors (ECs, also known as supercapacitors or ultracapacitors) are one of the electrochemical energy storage systems that can store and release energy at a pulse power. Commercial ECs based on activated carbon electrodes have a fairly low energy density, which is mainly due to the ill-defined physical and chemical properties of the activated carbon. Hence, the past decade has witnessed a rapid growth in the R&D of new carbon and carbon-based materials for ECs. Ideally, a carbon electrode should possess a high specific surface area (SSA) accessible to electrolyte ions, three-dimensional pores of appropriate sizes, good electrical conductivity, excellent stability against harsh environments (e.g., a wide range of temperatures, various electrolytes, and stress), flexibility, easy processability, compatibility with other materials (e.g., a current collector), and of course low cost. Integrating these features (and sometimes beyond) in one solid is one of the research frontiers. This feature article provides a brief review of advanced porous carbon materials with some or all of the above features that have been developed over the past few years.

Graphical abstract: Advanced porous carbon electrodes for electrochemical capacitors

Article information

Article type
Feature Article
Submitted
19 Mar 2013
Accepted
08 May 2013
First published
08 May 2013

J. Mater. Chem. A, 2013,1, 9395-9408

Advanced porous carbon electrodes for electrochemical capacitors

L. L. Zhang, Y. Gu and X. S. Zhao, J. Mater. Chem. A, 2013, 1, 9395 DOI: 10.1039/C3TA11114H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements