Issue 40, 2014

Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries

Abstract

Nitrogen-doped carbon microspheres (NCSs) were fabricated via a simple, fast and energy-saving microwave-assisted method followed by thermal treatment under an ammonia atmosphere. NCSs thermally treated at different temperatures were investigated as anode materials for lithium ion batteries (LIBs). The results show that NCSs treated at 900 °C exhibit a maximum reversible capacity of 816 mA h g−1 at a current density of 50 mA g−1 and preserve a capacity of 660 mA h g−1 after 50 cycles, and even at a high current density of 1000 mA g−1, a capacity of 255 mA h g−1 is maintained. The excellent electrochemical performance of NCSs is due to their porous structure and nitrogen-doping. The present NCSs should be promising low-cost anode materials with a high capacity and good cycle stability for LIBs.

Graphical abstract: Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries

Supplementary files

Article information

Article type
Communication
Submitted
25 Apr 2014
Accepted
03 Jun 2014
First published
05 Jun 2014

Dalton Trans., 2014,43, 14931-14935

Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries

T. Chen, L. Pan, T. A. J. Loh, D. H. C. Chua, Y. Yao, Q. Chen, D. Li, W. Qin and Z. Sun, Dalton Trans., 2014, 43, 14931 DOI: 10.1039/C4DT01223B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements