Copper-catalyzed one-pot synthesis of glycosylated iminocoumarins and 3-triazolyl-2-iminocoumarins

Pintu Kumar Mandal*
Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226 031, India. E-mail: pintuchem06@gmail.com

Received 19th November 2013 , Accepted 17th December 2013

First published on 18th December 2013


Abstract

A general strategy was developed for the synthesis of glycosyl iminocoumarins (5a–x) in a one-pot, copper-catalyzed multicomponent reaction involving a domino reaction of sulfonyl azides, sugar alkynes, and salicylaldehydes via ketenimine intermediate formation. Similarly, glycosyl 3-triazolyl-2-iminocoumarin derivatives (6a–o) have also been synthesized in a one-pot, three component condensation via tandem “CuAAC-aldol-cyclization-dehydration” sequence. In this event, a copper-catalyzed cycloaddition reaction between 2-azidoacetonitrile and sugar alkynes furnished a triazole derivative in situ and activated the neighboring methylene group, inducing an aldol–cyclization–dehydration sequence in the presence of a salicylaldehyde. The yields were very good in all reactions.


Introduction

The transformation of simple substrates into a library of complex molecules with structural diversity constitutes a great challenge in organic synthesis. The use of one-pot multicomponent reactions (MCRs) is attractive in terms of atom- and step-economy, operational simplicity, and environmental friendliness for generating highly functionalized molecules with complexity and diversity.1,2 Coumarins and iminocoumarins are privileged structural frameworks exhibiting widespread biological, medicinal, and material applications including anticancer,3a antitumor,3b antifungal,3c antimicrobial properties,3d and anti-HIV activities.3e Whereas iminocoumarins have been shown to be inhibitors of protein tyrosine kinase p56lck,4a dynamins I and II GTPase,4b in cancer research.4c Many coumarin triazoles (Fig. 1) have been widely used as drugs and in biochemistry due to their high emission yield, excellent photostability.5 Furthermore, iminocoumarins are widely used as dyes6a and fluorescent sensors for the estimation of metal ions in micromolar concentrations.6b
image file: c3ra46844e-f1.tif
Fig. 1 Coumarin scaffolds with substituted triazoles (a–c).

During the regular practice of screening novel heterocycles as drug candidates against various diseases, it was observed that several active molecules become toxic or incapable of delivering the exact function due to lack of specificity or insolubility. In general, oligosaccharides and glycoconjugates exert important effects on many complex biological events7 including the cellular recognition, inflammation, immune response, tumor metastasis, and bacterial and viral infections, etc.8

There is a number of naturally occurring coumarins glycosides9 [e.g. dauroside A, diosfeboside A, gumoside A, eleutheroside B etc.10 Fig. 2], the only coumarin C-glycoside that has been found in nature is dauroside D,11 also known as mulberroside B,11c which exhibits spasmolytic and hypotensive activities.12 In accord with the intriguing biological profile of coumarins, coumarin glycoside class of scaffold compounds exhibit a broad spectrum of biological activities13 such as anticoagulant, anticancer, antibacterial, antifungal activity and they are also useful as fluorescent probes for studies on ultrafast DNA dynamics14a as well as inhibitors of the Hsp90.14b


image file: c3ra46844e-f2.tif
Fig. 2 Example of some biologically active natural products containing “coumarin glycoside” scaffolds.

In view of the biological and other applications of coumarin and iminocoumarin derivatives, a number reaction conditions have been developed for the synthesis15,16 of coumarin glycosides. However, most of these methods have several shortcomings, such as a lack of generality or a lack of tolerance to sensitive functional groups. As a consequence, the development of simple methods for the synthesis of iminocoumarin derivatives is thus attractive and challenging. Therefore it was envisaged that linking of an iminocoumarin scaffold to a carbohydrate unit might lead to a new class of glycoconjugates that might have interesting biological profiles. Hence, a facile, one-pot synthesis of iminocoumarin glycosides and 3-triazolyl-2-iminocoumarin – glycosides using sugar alkynes, salicylaldehyde – and sulfonyl azides or 2-azidoacetonitrile is reported herein.

The copper-catalyzed Huisgen17 cycloaddition reaction or so called “click chemistry” has already earned a great deal of medicinal interest18 for the preparation of functionalized molecules. Exploiting this phenomenon, several methods have been developed to create functionally diverse classes of compounds using the MCR approach.19 Similarly, reaction of propargyl glycoside with salicylaldehyde and sulfonyl azide in the presence of CuI and triethylamine, resulted in the formation of the glycosyl iminocoumarin via ketenimine intermediate (Scheme 1, SET-A). Moreover, one-pot synthesis of glycosyl 3-triazolyl-2-iminocoumarin has also been achieved directly from the condensation of 2-azidoacetonitrile, propargyl glycoside, and salicylaldehyde in a tandem “CuAAC-aldol-cyclization-dehydration” sequence (Scheme 1, SET-B).


image file: c3ra46844e-s1.tif
Scheme 1 One-pot synthesis of glycosylated iminocoumarin and 3-triazolyl-2-iminocoumarin derivatives.

Results and discussion

To test this hypothesis, several sugar-derived alkynes (1a–k) (Fig. 3) was prepared by the literature procedures.20 Having prepared these glycosyl alkynes, initially the copper-catalyzed multicomponent reaction has been examined using propargyl glucoside (1a, 1.0 mmol) with tosyl azide (3, 1.0 mmol) and salicylaldehyde (2, 1.0 mmol) in the presence of copper(I) iodide (0.1 mmol) and triethylamine (2.0 mmol) in dichloromethane at room temperature (Table 1, entry 1). The reaction was sluggish and was incomplete even after 10 hours, giving the required product 5a in only 40% yield.
image file: c3ra46844e-f3.tif
Fig. 3 Selected sugar-derived alkynes for the multicomponent reaction.
Table 1 Optimization of reaction conditions for the synthesis of glycosylated iminocoumarins

image file: c3ra46844e-u1.tif

Entrya Base Solvent Catalyst Time (h) SET-A/B Yieldb (%) for 5a/6a
a The reaction was carried out with propargyl glucoside (1a, 1.0 mmol), TsN3 (3, 1.0 mmol)/2-azidoacetonitrile (4, 1.0 mmol), and salicylaldehyde (2, 1.0 mmol) in the presence of CuI (0.1 mmol) and base (2.0 mmol) in the appropriate solvent (5 mL) at r.t.b Isolated yields refer to propargyl glucoside (1a).
1 TEA CH2Cl2 CuI 10/24 40/29
2 TEA THF CuI 3/6 88/76
3 TEA CH3CN CuI 5/10 44/20
4 K2CO3 THF CuI 24/24 —/—
5 Pyridine THF CuI 6/24 20/—
6 TEA THF CuCl 6/24 40/—
7 DIPEA THF CuI 5/24 33/—
8 TEA EtOH CuI 10/12 42/55
9 TEA MeOH CuI 7/12 25/30
10 TEA 1,4-Dioxane CuI 7/18 37/33
11 TEA Toluene CuI 8/24 31/-
12 DMAP THF CuI 24/24 —/—
13 TEA THF CuBr 24/24 Trace/—


In order to optimize the reaction condition, several conditions have been screened with various solvent systems, bases and copper salts (Table 1). When the reaction was performed in tetrahydrofuran (entry 2) for 3 hours, it went nearly to completion, giving the desired glycosyl iminocoumarin 5a in 88% yield. As shown in Table 1, the desired product could be obtained in 42–44% yield using CH3CN or EtOH as a solvent (Table 1, entry 3 and 8). Whereas 1,4-dioxane (entry 10) or toluene (entry 11) gave the desired product 5a in 33% and 31% yield respectively. After the reaction solvent was changed from EtOH to MeOH a significant reduction in isolated product yield 42% and 25% respectively were observed (Table 1, entries 8 and 9).

Although the reason for getting better yields using THF as solvent is not clear, one possibility could be the solvation of copper salts by the THF through the ring oxygen atoms of THF, which improved the accessibility of the copper salts in the reactions. When triethylamine was replaced with pyridine (entry 5) in tetrahydrofuran, the yield of compound 5a was poor (20%). Furthermore, no reaction was observed in the presence of potassium carbonate (entry 4) or 4-(N,N-dimethylamino) pyridine (entry 12). However, the required glycosyl iminocoumarin (5a) was obtained in a moderate yield (33%) when the reaction was performed in the presence of N,N-diisopropylethylamine (entry 7). Extensive screening of reaction parameters such as varying base, and solvent led to an optimal reaction condition triethylamine as the base and tetrahydrofuran as the solvent to produce 88% yield of compound 5a. Next, different copper salts were tested using THF as solvent. When CuCl was used as the catalyst, the yield of the desired product was moderate (40%). However, CuBr failed to catalyze the reaction. Application of CuI as the catalyst resulted in the formation of the desired product in satisfactory yield. Considering the economic aspect and availability, CuI was the best choice for the reactions using other substrates. The reaction optimization experiments are illustrated in Table 1. The reaction condition has been generalized by using a variety of propargyl glycosides, azide and salicylaldehydes to generate a diverse range of products. Once the reaction condition was optimized for the synthesis of 5a, it was decided to prove the generality of the reaction condition to construct glucosyl iminocoumarin derivatives with different sugar alkynes, salicylaldehyde, and sulfonyl azides. Further 4-methylbenzenesulfonyl azide, naphthalene sulfonyl azide and 4-methoxybenzenesulfonyl azide were also used in the reactions with different sugar alkynes. A series of four different substituted 2-hydroxy benzaldehyde were also investigated. In all the cases, the multicomponent reaction occurred smoothly to give the corresponding glucosyl iminocoumarin derivatives in 64–88% yields. Reactions with propargyl glycosides of deoxy sugars afforded the target compound in 2 h, whereas normal pyranosides are converted completely within 3 h. For S-propynyl, and sulfonyl glycosides derivatives, the reactions were completed in approximately 4 h. The time difference for complete reaction can be attributed to the respective reactivity difference among various sugars. Results of these reactions are summarized in Table 2.

Table 2 Copper-catalyzed synthesis of glycosylated iminocoumarin

image file: c3ra46844e-u2.tif

image file: c3ra46844e-u3.tif image file: c3ra46844e-u4.tif image file: c3ra46844e-u5.tif image file: c3ra46844e-u6.tif
5a (88%) 5b (69%) 5c (87%) 5d (77%)
image file: c3ra46844e-u7.tif image file: c3ra46844e-u8.tif image file: c3ra46844e-u9.tif image file: c3ra46844e-u10.tif
5e (88%) 5f (69%) 5g (70%) 5h (72%)
image file: c3ra46844e-u11.tif image file: c3ra46844e-u12.tif image file: c3ra46844e-u13.tif image file: c3ra46844e-u14.tif
5i (73%) 5j (72%) 5k (72%) 5l (66%)
image file: c3ra46844e-u15.tif image file: c3ra46844e-u16.tif image file: c3ra46844e-u17.tif image file: c3ra46844e-u18.tif
5m (82%) 5n (79%) 5o (69%) 5p (65%)
image file: c3ra46844e-u19.tif image file: c3ra46844e-u20.tif image file: c3ra46844e-u21.tif image file: c3ra46844e-u22.tif
5q (85%) 5r (81%) 5s (75%) 5t (72%)
image file: c3ra46844e-u23.tif image file: c3ra46844e-u24.tif image file: c3ra46844e-u25.tif image file: c3ra46844e-u26.tif
5u (67%) 5v (64%) 5w (79%) 5x (73%)


Next, it was decided to study the one-pot synthesis of glucosyl 3-triazolyl-2-iminocoumarin (6a) directly from the condensation of 2-azidoacetonitrile 4, propargyl glucoside 1a, and salicylaldehyde 2 under the optimized conditions (Table 1, entry 2) via a tandem “CuAAC–aldol–cyclization–dehydration” sequence (Scheme 2) as “click-and activate nucleophiles” approach toward MCRs. The reaction was complete after 6 hours, giving the required product 6a in 76% yield (Table 1, entry 2). A number of reaction conditions have been tested for the optimisation of this reaction as shown in Table 1. The desired product could be obtained in 20–55% yield using CH3CN, CH2Cl2, CH3OH, 1,4-dioxane or EtOH as a solvent (Table 1, entry 1, 3, and 8–10). Furthermore, no reaction was observed in the presence of other bases such as pyridine, K2CO3, DMAP and DIPEA.


image file: c3ra46844e-s2.tif
Scheme 2 One-pot synthesis of glucosyl 3-triazolyl-2-iminocoumarins in a tandem “CuAAC-aldol-cyclization-dehydration” sequence.

Interestingly, the influence of the third component, salicylaldehyde in the formation of triazole on the CuAAC step has also been observed here (Table 3). The rate of triazole formation was very slow when 1.0 equiv. of propargyl glucoside (1a) was added to 2-azidoacetonitrile (4) in the presence of CuI (0.1 mol) and (2 equiv.) of triethylamine (7% and 8% isolated yield at 4 h, entries 1 and 4, respectively) and the reaction rate was greatly accelerated by the addition of salicylaldehyde 2 in the presence of triethylamine (entry 2).

Table 3 Chelating role on CuAAC reaction

image file: c3ra46844e-u27.tif

Entry TEA

image file: c3ra46844e-u28.tif

Isolated yield of (7)
2 h 4 h
1 0 0 5% 7%
2 1.0 equiv. 0.1 equiv. 55% 82%
3 1.0 equiv. 0 22% 48%
4 0 0.1 equiv. 6% 8%


A possible explanation for the improved yield of the reaction may be due to the property of salicylaldehyde to act as bidentate ligand in forming a wide variety of Cu complexes with different coordination numbers and geometries.21 In earlier studies, it was shown that some ligands such as tris-(benzyltriazolylmethyl)amine, tris-(benzimidazole) and tris-(benzothiazole) ligands significantly accelerate the CuAAC reaction via activation or stabilization of the catalytic Cu(I) species.22 So it could be assumed that the deprotonated salicylaldehyde 2 can play a similar chelating role to promote the reaction, though to a lesser extent. The “click-and-activate” concept was demonstrated in the following control experiments (Scheme 3). Treatment of glucosyl triazole (7) with 1.0 equiv. of 2 and 2.0 equiv. of triethylamine in THF led to the formation of 3-triazolyl-2-iminocoumarin (6a) in 76% yield in 4 h, whereas 2-azidoacetonitrile (4) failed to afford any amount of 3-azido-2-iminocoumarin (8) under the same conditions.


image file: c3ra46844e-s3.tif
Scheme 3 Control experiments on 2-iminocoumarin formation.

Since the reaction condition requires same base and solvent in both steps, it was decided to run the entire three-component condensation in one pot synthesis as follows Table 4.

Table 4 Copper-catalyzed one-pot synthesis of glycosylated 3-triazolyl-2-iminocoumarins

image file: c3ra46844e-u29.tif

image file: c3ra46844e-u30.tif image file: c3ra46844e-u31.tif image file: c3ra46844e-u32.tif
6a (76%) 6b (75%) 6c (76%)
image file: c3ra46844e-u33.tif image file: c3ra46844e-u34.tif image file: c3ra46844e-u35.tif
6d (62%) 6e (63%) 6f (55%)
image file: c3ra46844e-u36.tif image file: c3ra46844e-u37.tif image file: c3ra46844e-u38.tif
6g (74%) 6h (73%) 6i (52%)
image file: c3ra46844e-u39.tif image file: c3ra46844e-u40.tif image file: c3ra46844e-u41.tif
6j (72%) 6k (65%) 6l (62%)
image file: c3ra46844e-u42.tif image file: c3ra46844e-u43.tif image file: c3ra46844e-u44.tif
6m (66%) 6n (56%) 6o (56%)


It is worth noting that two rings and four bonds of three different types (e.g. one C–C, one C–O, and two C–N bonds) were formed in one pot three component condensation and all four new bonds are formed with 2-azidoacetonitrile (4). This three-component reaction provides rapid access to a diverse range of glycosylated 3-triazolyl-2-iminocoumarins by condensing a variety of salicylaldehydes (2) and sugar derived alkynes (1a–k) with 4 as shown in Table 4. Both electron-donating and electron-withdrawing groups are tolerated at various positions on the salicylaldehyde component.

Conclusions

In summary, synthesis of a variety of glycosyl iminocoumarins and glycosyl 3-triazolyl-2-iminocoumarin derivatives in which the carbohydrate unit is attached to the C-3 carbon of the iminocoumarin skeletons as well as triazole linked iminocoumarins have been achieved in good yield through copper catalysed multicomponent reaction and “click-and-activate nucleophiles” protocol. The resulting glycosyl iminocoumarins can serve as intermediates for the synthesis of the corresponding coumarin glycosides. The present strategy therefore provides a path to the synthesis of a series triazole linked glycosyl iminocoumarins and simple glycosyl iminocoumarins that might have interesting biological profiles.

Experimental

General methods

All reactions were monitored by thin layer chromatography over silica gel-coated TLC plates. The spots on TLC were visualized by warming ceric sulfate [2% Ce(SO4)2 in 5% H2SO4 in EtOH]-sprayed plates on a hot plate. Silica gel 230–400 mesh was used for column chromatography. 1H and 13C NMR spectra were recorded on Bruker DPX-400 MHz spectrometer. Chemical shifts δ are given in ppm relative to the residual signals of tetramethylsilane in CDCl3 for 1H and 13C NMR. Coupling constants are given in Hertz. ESI-MS were recorded on a JEOL spectrometer. Elementary analysis was carried out on Carlo ERBA analyzer. IR spectra were recorded on Shimadzu Spectrophotometers. Optical rotations were determined on Autopol III polarimeter. Commercially available grades of organic solvents of adequate purity are used in all reactions.

Typical experimental protocol for the synthesis of 2-propynyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (1a)

To a solution of penta-O-acetyl-β-D-glucopyranose (10 g, 25.6 mmol) in anhydrous CH2Cl2 (200 mL) was added freshly distilled propargyl alcohol (1.8 mL, 30.7 mmol) and BF3·OEt2 (4.8 mL, 38.4 mmol) at 0 °C and the reaction mixture was stirred at room temperature for 6 h. After completion of the reaction, the reaction mixture was diluted with CH2Cl2 (100 mL) and washed with saturated aqueous NaHCO3, and water, dried (Na2SO4) and concentrated which was crystallised (CH2Cl2–hexane) to obtain the compound 1a (9.10 g, 92%) as a white solid. mp 112–113 °C; [α]25D −40 (c 1.0, CHCl3); IR (KBr): 3060, 2128, 1744, 1633, 1566, 1081, 758, cm−1; 1H NMR (400 MHz, CDCl3): δ 5.26 (t, J = 9.4 Hz, 1H), 5.12 (t, J = 9.5 Hz, 1H), 5.04 (t, J = 9.1 Hz, 1H), 4.80 (d, J = 8.0 Hz, 1H), 4.39 (br s, 2H), 4.31–4.27 (m, 1H), 4.18–4.15 (m, 1H), 3.77–3.73 (m, 1H), 4.29 (t, J = 2.8 Hz, 1H), 2.10 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.6, 170.2, 169.4 (2C), 98.1, 78.1, 75.5, 72.8, 71.9, 70.9, 68.3, 61.8, 55.9, 20.7, 20.6, 20.5 (2C); ESI-MS: m/z 409.1 [M + Na]+. Anal. calcd for C17H22O10 (386.12): C, 52.85; H, 5.74. Found: C, 52.74; H, 5.83%.

General procedure for the preparation of compound (5a–x)

To a solution of carbohydrate-derived alkyne (1.0 mmol), TsN3 (1.0 mmol), CuI (0.1 mmol), and salicylaldehyde (1.0 mmol) in THF (5 mL) was dropwise added Et3N (2.0 mmol) at room temperature and the mixture was stirred at room temperature for 2 h. The reaction mixture was concentrated and the residue was diluted with CH2Cl2 (20 mL) and washed successively with H2O (10 mL) and brine (10 mL). The organic layer was dried (Na2SO4) and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane–EtOAc; 1[thin space (1/6-em)]:[thin space (1/6-em)]1) to give the corresponding glycosyl iminocoumarin derivative.
Data for 5a. White solid; yield 88% (580 mg); mp 110–3112 °C; [α]25D +110 (c 1.0, CHCl3); IR (KBr): 3019, 2400, 1754, 1564, 1403, 1320, 1043, 927, 669 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 8.3 Hz, 2H), 7.68 (s, 1H), 7.49–7.44 (m, 2H), 7.33 (d, J = 8.1 Hz, 1H), 7.29–7.25 (m, 3H), 5.14 (t, J = 9.5 Hz, 1H), 5.06–4.99 (m, 2H), 4.69 (dd, J = 1.4, 15.4 Hz, 1H), 4.57 (d, J = 8.0 Hz, 1H), 4.46 (dd, J = 1.4, 15.4 Hz, 1H), 4.20 (dd, J = 4.8, 12.4 Hz, 1H), 4.03 (dd, J = 2.3, 12.4 Hz, 1H), 3.64–3.59 (m, 1H), 2.34 (s, 3H), 1.97 (s, 6H), 1.96 (s, 3H), 1.95 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.6, 170.1, 169.5, 169.4, 156.0, 151.9, 143.5, 138.7, 137.6, 131.9, 129.3 (2C), 128.3, 127.6 (2C), 126.1, 125.9, 119.2, 116.4, 100.9, 72.6, 72.0, 71.3, 68.2, 66.3, 61.7, 21.6, 20.7, 20.6, 20.5 (2C); ESI-MS: m/z 660.0 [M + H]+. Anal. calcd for C31H33NO13S (659.16): C, 56.44; H, 5.04. Found: C, 56.27; H, 5.25%.
Data for 5b. White solid; yield 69% (480 mg); mp 115–116 °C; [α]25D +109 (c 1.0, CHCl3); IR (KBr): 3023, 2403, 1750, 1633, 1564, 1380, 1219, 1046, 759, 670 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.68 (d, J = 8.6 Hz, 1H), 8.48 (d, J = 7.4 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.66 (s, 1H), 7.58–7.54 (m, 2H), 7.50–7.39 (m, 3H), 7.27–7.17 (m, 2H), 5.07–4.97 (m, 3H), 4.67 (d, J = 15.4, 1H), 4.49 (d, J = 7.4 Hz, 1H), 4.43 (d, J = 15.3 Hz, 1H), 4.12 (dd, J = 4.6, 12.6 Hz, 1H), 3.97 (dd, J = 1.6, 12.4 Hz, 1H), 3.50–3.47 (m, 1H), 1.96 (s, 3H), 1.94 (s, 3H), 1.93 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 170.6, 170.1, 169.5, 169.4, 156.4, 151.9, 137.9, 137.4, 134.2, 134.1, 131.9, 128.7 (2C), 128.6, 128.3, 127.9, 126.7, 126.0, 125.9, 125.7, 124.2, 119.1, 116.3, 100.9, 72.6, 71.9, 71.2, 68.2, 66.3, 61.7, 20.8, 20.7, 20.6 (2C); ESI-MS: m/z 696.0 [M + H]+. Anal. calcd for C34H33NO13S (695.16): C, 58.70; H, 4.78. Found: C, 58.58; H, 4.90%.
Data for 5c. White solid; yield 87% (573 mg); mp 95–97 °C; [α]25D +89 (c 1.0, CHCl3); IR (KBr): 3022, 2403, 1748, 1633, 1566, 1454, 1219, 1153, 1081, 759, 671 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 8.4 Hz, 2H), 7.71 (s, 1H), 7.49–7.44 (m, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.29–7.24 (m, 3H), 5.34 (d, J = 3.4 Hz, 1H), 5.24 (dd, J = 8.0,10.3 Hz, 1H), 4.97 (dd, J = 3.5,10.4 Hz, 1H), 4.70 (dd, J = 1.3, 15.6 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.45 (dd, J = 1.4, 15.4 Hz, 1H), 4.07 (d, J = 6.7 Hz, 2H), 3.86 (t, J = 6.6 Hz, 1H), 2.33 (s, 3H), 2.08 (s, 3H), 1.97 (s, 3H), 1.95 (s, 3H), 1.92 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.2, 169.9, 169.6, 155.9, 151.9, 143.5, 138.7, 137.6, 131.9, 129.3 (2C), 128.3, 127.6 (2C), 126.1, 125.9, 119.2, 116.4, 101.4, 70.9, 70.7, 68.9, 67.0, 66.2, 61.2, 21.5, 20.8, 20.6 (2C), 20.5; ESI-MS: m/z 660.0 [M + H]+. Anal. calcd for C31H33NO13S (659.16): C, 56.44; H, 5.04. Found: C, 56.28; H, 5.22%.
Data for 5d. Solid; yield 77% (520 mg); mp 105–107 °C; [α]25D +98 (c 1.0, CHCl3); IR (KBr): 3021, 2268, 1633, 1566, 1454, 1219, 1081, 758, cm−1; 1H NMR (400 MHz, CDCl3): δ 7.98 (d, J = 8.9 Hz, 2H), 7.69 (s, 1H), 7.49–7.44 (m, 2H), 7.35–7.25 (m, 2H), 6.92 (d, J = 8.9 Hz, 2H), 5.34 (d, J = 3.3 Hz, 1H), 5.24 (dd, J = 7.9, 10.5 Hz, 1H), 4.98 (dd, J = 3.5, 10.5 Hz, 1H), 4.72 (dd, J = 1.4, 15.3 Hz, 1H), 4.57 (d, J = 7.9 Hz, 1H), 4.45 (dd, J = 1.3, 15.3 Hz, 1H), 4.07 (d, J = 6.2 Hz, 1H), 3.88–3.85 (m, 1H), 3.77 (s, 3H), 2.08 (s, 3H), 1.98 (s, 3H), 1.95 (s, 3H), 1.92 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.2, 169.9, 169.7, 162.9, 155.8, 151.9, 137.4, 133.8, 131.9, 129.8 (2C), 128.3, 126.1, 125.9, 119.2, 116.3, 113.9 (2C), 101.4, 70.9, 70.7, 68.9, 67.0, 66.3, 61.2, 55.6, 20.8, 20.6 (2C), 20.5; ESI-MS: m/z 676.0 [M + H]+. Anal. calcd for C31H33NO14S (675.16): C, 55.11; H, 4.92. Found: C, 55.01; H, 5.03%.
Data for 5e. Solid; yield 88% (529 mg); mp 85–87 °C; [α]25D +77 (c 1.0, CHCl3); IR (KBr): 3021, 2402, 1632, 1568, 1485, 1405, 1218, 1083, 927, 668 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 8.2 Hz, 2H), 7.72 (s, 1H), 7.49–7.46 (m, 2H), 7.33–7.23 (m, 4H), 5.29–5.26 (m, 2H), 5.03 (t, J = 9.5 Hz, 1H), 4.79 (br s, 1H), 4.59 (d, J = 15.2 Hz, 1H), 4.31 (d, J = 15.3 Hz, 1H), 3.91–3.84 (m, 1H), 2.32 (s, 3H), 2.08 (s, 3H), 1.98 (s, 3H), 1.94 (s, 3H), 1.16 (d, J = 6.3 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 170.2, 170.1, 169.9, 156.1, 152.0, 143.5, 138.6, 137.5, 132.0, 129.3 (2C), 128.4, 127.6 (2C),125.9, 125.8, 119.0, 116.3, 97.4, 70.8, 69.6, 69.1, 66.9, 63.9, 21.5, 20.9, 20.8, 20.7, 17.4; ESI-MS: m/z 602.0 [M + H]+. Anal. calcd for C29H31NO11S (601.16): C, 57.90; H, 5.19. Found: C, 57.76; H, 5.31%.
Data for 5f. Light yellow syrup; yield 69% (440 mg); [α]25D +57 (c 1.0, CHCl3); IR (neat): 3020, 1744,1634, 1553, 1515, 1466, 1218, 1048, 770, 667 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.66 (d, J = 8.6 Hz, 1H), 8.47 (d, J = 7.4 Hz, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.66 (s, 1H), 7.55–7.50 (m, 2H), 7.46–7.36 (m, 3H), 7.21–7.17 (m, 1H), 7.12 (d, J = 8.2 Hz, 1H), 5.28–5.24 (m, 2H), 5.02 (t, J = 9.6 Hz, 1H), 4.75 (br s, 1H), 4.56 (dd, J = 1.3, 15.2 Hz, 1H), 4.28 (dd, J = 1.3, 15.2 Hz, 1H), 3.84–3.77 (m, 1H), 2.06 (s, 3H), 1.96 (s, 3H), 1.93 (s, 3H), 1.11 (d, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 170.2, 170.1, 169.9, 156.4, 151.9, 137.8, 137.4, 134.1, 134.0, 132.0, 128.7, 128.6, 128.5, 128.3, 127.9, 126.7, 125.9, 125.7, 125.6, 124.1, 118.9, 116.2, 97.3, 70.8, 69.5, 69.1, 66.9, 63.8, 20.9, 20.8, 20.7, 17.3; ESI-MS: m/z 638.0 [M + H]+. Anal. calcd for C32H31NO11S (637.16): C, 60.27; H, 4.90. Found: C, 60.16; H, 5.05%.
Data for 5g. Solid; yield 70% (463 mg); mp 90–92 °C; [α]25D +67 (c 1.0, CHCl3); IR (KBr): 3017, 2363, 1659, 1610, 1512, 1436, 1246, 1091, 759, 601 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.31 (dd, J = 2.8, 9.0 Hz, 1H), 7.92 (d, J = 9.1 Hz, 2H), 7.81 (s, 1H), 7.73 (d, J = 9.0 Hz, 1H), 7.49 (d, J = 9.1 Hz, 1H), 6.84 (d, J = 9.1 Hz, 2H), 5.29–5.26 (m, 2H), 5.03 (t, J = 9.6 Hz, 1H), 4.80 (br s, 1H), 4.56 (d, J = 15.4 Hz, 1H), 4.31 (d, J = 15.5 Hz, 1H), 3.87–3.82 (m, 1H), 3.79 (s, 3H), 2.08 (s, 3H), 1.98 (s, 3H), 1.94 (s, 3H), 1.16 (d, J = 6.3 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 170.2 (2C), 169.9, 163.3, 154.8, 154.1, 144.8, 135.6, 132.5, 129.7, 128.7, 128.4, 126.5, 124.0, 119.3, 117.7, 114.1 (2C), 97.5, 70.7, 69.5, 69.1, 67.1, 63.8, 55.7, 20.8, 20.7 (2C), 17.4; ESI-MS: m/z 685.1 [M + Na]+. Anal. calcd for C29H30N2O14S (662.14): C, 52.57; H, 4.56. Found: C, 52.43; H, 4.66%.
Data for 5h. Yellow oil; yield 72% (469 mg); [α]25D +69 (c 1.0, CHCl3); IR (neat): 3018, 2363, 1748, 1636, 1553, 1466, 1405, 1218, 1085, 770, 668 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.42 (s, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 9.1 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.67–7.63 (m, 1H), 7.54–7.49 (m, 1H), 7.40 (d, J = 9.1 Hz, 1H), 7.26 (d, J = 8.1 Hz, 2H), 5.39–5.36 (m, 2H), 5.07 (t, J = 9.7 Hz, 1H), 4.86 (br s, 1H), 4.68 (dd, J = 1.3, 15.3 Hz, 1H), 4.39 (dd, J = 1.2, 15.3 Hz, 1H), 3.95–3.88 (m, 1H), 2.33 (s, 3H), 2.10 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.18 (d, J = 6.3 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 170.3, 170.2, 169.9, 156.1, 151.7, 143.4, 138.9, 133.4, 133.3, 130.7, 129.3 (2C), 128.9, 128.8, 128.6, 127.6 (2C), 126.8, 125.1, 121.8, 115.8, 113.8, 97.3, 70.9, 69.8, 69.1, 67.2, 64.1, 21.6, 20.9, 20.8 (2C), 17.4; ESI-MS: m/z 651.9 [M + H]+. Anal. calcd for C33H33NO11S (651.17): C, 60.82; H, 5.10. Found: C, 60.71; H, 5.22%.
Data for 5i. White solid; yield 73% (526 mg); mp 120–122 °C; [α]25D −78 (c 1.0, CHCl3); IR (KBr): 3020, 2328, 1629, 1564, 1216, 1159, 1086, 1020, 909, 759, 677 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.38–8.31 (m, 2H), 7.94 (d, J = 9.0 Hz, 2H), 7.76 (s, 1H), 7.51 (d, J = 9.0 Hz, 1H), 6.95 (d, J = 9.0 Hz, 2H), 5.35 (d, J = 3.4 Hz, 1H), 5.24 (dd, J = 8.0, 10.4 Hz, 1H), 4.99 (dd, J = 3.4, 10.5 Hz, 1H), 4.70 (dd, J = 1.4, 15.3 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.42 (dd, J = 1.3, 15.5 Hz, 1H), 4.07 (t, J = 6.3 Hz, 2H), 3.87 (t, J = 6.8 Hz, 1H), 3.80 (s, 3H), 2.10 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H), 1.94 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.2, 170.3, 169.7, 163.3, 154.8, 153.9, 144.9, 135.5, 132.7, 129.7 (2C), 128.9, 126.4, 123.9, 119.5, 117.7, 114.1 (2C), 101.2, 70.9, 70.6, 68.8, 66.9, 65.7, 61.1, 55.7, 20.8, 20.7 (2C), 20.6; ESI-MS: m/z 721.0 [M + H]+. Anal. calcd for C31H32N2O16S (720.14): C, 51.67; H, 4.48. Found: C, 51.58; H, 4.63%.
Data for 5j. White foam; yield 72% (510 mg); [α]25D −44 (c 1.0, CHCl3); IR (neat): 3020, 2326, 1633, 1560, 1457, 1383, 1318, 1255, 1214, 1160, 1086, 1070, 1002, 905, 671 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.55 (s, 1H), 8.34 (d, J = 8.4 Hz, 1H), 7.97–7.93 (m, 3H), 7.85 (d, J = 8.4 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.3 Hz, 1H), 7.46 (d, J = 9.0 Hz, 1H), 7.26 (d, J = 7.8 Hz, 2H), 5.38–5.31 (m, 2H), 5.03 (dd, J = 3.3, 10.5 Hz, 1H), 4.87 (d, J = 15.5 Hz, 1H), 4.61 (d, J = 8.1 Hz, 1H), 4.49 (d, J = 15.4 Hz, 1H), 4.11–4.09 (m, 2H), 3.89 (t, J = 6.5 Hz, 1H), 2.34 (s, 3H), 2.11 (s, 3H), 1.96 (s, 6H), 1.94 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.2, 170.0 (2C), 155.9, 151.6, 143.4, 138.9, 133.6, 133.3, 130.8, 129.3 (2C), 128.9, 128.8, 128.7, 127.6 (2C), 126.8, 125.5, 121.9, 115.9, 114.2, 101.6, 71.0, 70.5, 69.2, 67, 3, 67.0, 66.6, 61.3, 21.6, 20.9, 20.7 (2C), 20.5; ESI-MS: m/z 710.0 [M + H]+. Anal. calcd for C35H35NO13S (709.18): C, 59.23; H, 4.97. Found: C, 59.11; H, 5.15%.
Data for 5k. Light yellow syrup; yield 72% (486 mg); [α]25D +54 (c 1.0, CHCl3); IR (neat): 3020, 2403,1634, 1549, 1515, 1465, 1218, 1152, 1042, 759, 678 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.93 (d, J = 7.6 Hz, 2H), 7.68 (s, 1H), 7.50–7.36 (m, 3H), 7.29–7.24 (m, 3H), 5.31 (d, J = 3.1 Hz, 1H), 5.12 (t, J = 9.9 Hz, 1H), 4.90 (dd, J = 3.3, 9.9 Hz, 1H), 4.64 (d, J = 10.0 Hz, 1H), 3.97–3.95 (m, 2H), 3.78–3.66 (m, 3H), 2.36 (s, 3H), 2.07 (s, 3H), 1.98 (s, 3H), 1.91 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 170.3, 170.2, 169.9, 169.7, 157.6, 152.1, 143.5, 139.5, 138.9, 132.1, 129.4 (2C), 127.9, 127.5 (2C), 125.9, 119.2, 116.5 (2C), 84.5, 74.3, 71.7, 67.4, 67.2, 61.3, 29.9, 21.5, 20.8, 20.7, 20.6, 20.5; ESI-MS: m/z 676.0 [M + H]+. Anal. calcd for C31H33NO12S2 (675.14): C, 55.10; H, 4.92. Found: C, 54.97; H, 5.03%.
Data for 5l. Yellow oil; yield 66% (489 mg); [α]25D +34 (c 1.0, CHCl3); IR (neat): 3019, 2400, 1664, 1553, 1405, 1215, 1086, 756, 669 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.47 (s, 1H), 8.19 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.5 Hz, 2H), 7.96–7.85 (m, 2H), 7.66–7.52 (m, 2H), 7.49 (d, J = 8.6 Hz, 1H), 6.97 (d, J = 8.7 Hz, 2H), 5.31 (d, J = 3.1 Hz, 1H), 5.15 (t, J = 9.7 Hz, 1H), 4.93 (dd, J = 3.2, 10.0 Hz, 1H), 4.72 (d, J = 10.0 Hz, 1H), 3.95 (dd, J = 3.5, 6.6 Hz, 1H), 3.82–3.77 (m, 3H), 3.80 (s, 3H), 3.71 (t, J = 6.6 Hz, 1H), 2.07 (s, 3H), 1.98 (s, 3H), 1.91 (s, 3H), 1.84 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.3, 170.2, 169.9, 169.8, 157.5, 151.8, 144.9, 139.2, 135.5, 133.7, 133.4, 131.3, 130.8, 129.6 (2C), 129.2, 128.6, 126.8, 121.5, 116.1, 115.1, 113.9 (2C), 84.8, 74.3, 71.7, 67.5, 67.2, 61.3, 55.6, 30.3, 20.8, 20.7, 20.6, 20.5; ESI-MS: m/z 742.0 [M + H]+. Anal. calcd for C35H35NO13S2 (741.15): C, 56.67; H, 4.76. Found: C, 56.53; H, 4.88%.
Data for 5m. Light brown oil; yield 82% (616 mg); [α]25D −115 (c 1.0, CHCl3); IR (neat): 3020, 2403,1664, 1612, 1599, 1533, 1460, 1218, 1134, 1072, 909, 680 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.97 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 2.3 Hz, 1H), 7.62–7.58 (m, 1H), 7.51 (s, 1H), 7.34–7.28 (m, 3H), 5.37 (d, J = 3.2 Hz, 1H), 5.13 (dd, J = 8.0, 10.6 Hz, 1H), 4.97 (dd, J = 3.4, 10.5 Hz, 1H), 4.42 (d, J = 8.0 Hz, 1H), 4.15–4.05 (m, 3H), 3.86 (t, J = 6.6 Hz,1H), 3.77–3.72 (m, 1H), 2.90–2.76 (m, 2H), 2.42 (s, 3H), 2.13 (s, 3H), 2.05 (s, 3H), 1.96 (s, 3H), 1.75 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.5, 170.1, 170.0, 169.3, 157.4, 150.9, 143.5, 139.4, 138.9, 134.2, 130.3, 129.4 (2C), 127.9, 127.3 (2C), 121.2, 118.3, 117.9, 101.0, 70.7 (2C), 68.8, 66.9, 66.6, 61.2, 31.2, 21.5, 20.7, 20.6, 20.5, 20.4; ESI-MS: m/z 752.1 [M + H]+. Anal. calcd for C32H34BrNO13S (751.09): C, 51.07; H, 4.55. Found: C, 50.91; H, 4.69%.
Data for 5n. White foam; yield 79% (544 mg); [α]25D −27 (c 1.0, CHCl3); IR (neat): 3020, 2230, 1636, 1569, 1458, 1375, 1303, 1216, 1158, 1086, 837, 677 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.06 (d, J = 9.0 Hz, 2H), 7.59 (s, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.40–7.31 (m, 2H), 7.01 (d, J = 9.0 Hz, 2H), 5.37 (d, J = 3.1 Hz, 1H), 5.14 (dd, J = 8.0, 10.6 Hz, 1H), 4.99 (dd, J = 3.4, 10.4 Hz, 1H), 4.46 (d, J = 8.0 Hz, 1H), 4.13–4.10 (m, 3H), 3.90 (t, J = 6.6 Hz, 1H), 3.85 (s, 3H), 3.83–3.76 (m, 1H), 2.93–2.77 (m, 2H), 2.12 (s, 3H), 2.05 (s, 3H), 1.95 (s, 3H), 1.68 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.3, 170.1, 169.9, 169.3, 162.9, 157.9, 152.1, 140.7, 133.6, 131.5, 12.6 (2C), 128.0, 126.5, 125.6, 119.6, 116.1, 113.8 (2C), 101.0, 70.7, 70.6, 68.8, 67.0, 66.8, 61.6, 55.6, 31.2, 20.6, 20.5, 20.4, 20.3; ESI-MS: m/z 690.0 [M + H]+. Anal. calcd for C32H35NO14S (689.17): C, 55.73; H, 5.12. Found: C, 55.59; H, 5.25%.
Data for 5o. Yellow syrup; yield 69% (488 mg); [α]25D +37 (c 1.0, CHCl3); IR (neat): 3010, 2330, 1736, 1669, 1530, 1458, 1365, 1213, 1158, 1036, 877, 669 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.99 (d, J = 8.3 Hz, 2H), 7.92 (s, 1H), 7.60–7.54 (m, 2H), 7.37–7.33 (m, 4H), 5.74 (t, J = 9.8 Hz, 1H), 5.44 (d, J = 3.3 Hz, 1H), 5.14 (dd, J = 3.4, 10.0 Hz, 1H), 4.92 (d, J = 10.0 Hz, 1H), 4.85 (d, J = 14.6 Hz, 1H), 4.16–4.09 (m, 4H), 2.41 (s, 3H), 2.13 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.3, 170.2, 169.8, 169.1, 157.3, 152.5, 145.1, 144.1, 138.2, 133.2, 129.6 (2C), 128.9, 127.7 (2C), 126.3, 118.9, 117.9, 116.4, 88.9, 75.1, 71.4, 66.8, 63.2, 60.9, 51.9, 21.5, 20.7 (2C), 20.6, 20.5; ESI-MS: m/z 707.9 [M + H]+. Anal. calcd for C31H33NO14S2 (707.13): C, 52.61; H, 4.70. Found: C, 52.54; H, 4.79%.
Data for 5p. Yellow oil; yield 65% (439 mg); [α]25D +22 (c 1.0, CHCl3); IR (neat): 3021, 2229, 1628, 1574, 1455, 1375, 1321, 1259, 1089, 1019, 911, 838, 759, 671 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.94 (d, J = 8.4 Hz, 2H), 7.68 (s, 1H), 7.51–7.36 (m, 3H), 7.29 (d, J = 8.3 Hz, 3H), 5.06–4.88 (m, 3H), 4.65 (d, J = 10.0 Hz, 1H), 4.11 (dd, J = 4.7, 12.4 Hz, 1H), 3.95 (dd, J = 1.4, 12.5 Hz, 1H), 3.70 (dd, J = 14.5 Hz, 2H), 3.50–3.46 (m, 1H), 2.36 (s, 3H), 1.95 (s, 6H), 1.93 (s, 3H), 1.91 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.5, 170.1, 169.5, 169.4, 157.6, 152.1, 143.5, 139.6, 138.9, 132.1, 129.4 (2C), 127.9, 127.6, 127.5 (2C), 125.9, 119.3, 116.5, 84.1, 75.6, 73.7, 70.2, 68.1, 61.9, 29.8, 21.6, 20.7, 20.6, 20.5 (2C); ESI-MS: m/z 676.0 [M + H]+. Anal. calcd for C31H33NO12S2 (675.14): C, 55.10; H, 4.92. Found: C, 54.98; H, 5.03%.
Data for 5q. White foam; yield 85% (560 mg); [α]25D −33 (c 1.0, CHCl3); IR (neat): 3010, 2368, 1635, 1561, 1375, 1216, 1158, 1086, 1051, 968, 677 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.91 (d, J = 8.2 Hz, 2H), 7.72 (s, 1H), 7.51–7.47 (m, 2H), 7.35–7.23 (m, 4H), 5.34–5.22 (m, 3H), 4.87 (br s, 1H), 4.61 (d, J = 15.1 Hz, 1H), 4.29 (d, J = 15.3 Hz, 1H), 4.26–4.21 (m, 1H), 4.06–4.01 (m, 2H), 2.33 (s, 3H), 2.09 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.95 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.7, 170.1, 170.0, 169.7, 156.1, 152.1, 143.5, 138.7, 137.9, 132.1, 129.5 (2C), 128.4, 127.6 (2C), 125.9, 125.5, 18.9, 116.4, 97.5, 69.3, 69.1, 69.0, 65.9, 64.2, 62.3, 21.5, 20.8, 20.7, 20.6 (2C); ESI-MS: m/z 659.9 [M + H]+. Anal. calcd for C31H33NO13S (659.16): C, 56.44; H, 5.04. Found: C, 56.27; H, 5.25%.
Data for 5r. White solid; yield 81% (571 mg); mp 96–98 °C; [α]25D −43 (c 1.0, CHCl3); IR (KBr): 3022, 2363, 1747, 1633, 1554, 1376, 1218, 1051, 758, 671 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.95 (d, J = 8.9 Hz, 2H), 7.65 (s, 1H), 7.39 (d, J = 9.2 Hz, 1H), 6.91 (d, J = 9.1 Hz, 2H), 6.86–6.83 (m, 2H), 5.32–5.21 (m, 3H), 4.86 (br s, 1H), 4.57 (d, J = 14.5 Hz, 1H), 4.27–4.20 (m, 2H), 4.06–3.99 (m, 2H), 3.83 (s, 3H), 3.77 (s, 3H), 2.09 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.94 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.7, 170.1, 170.0, 169.7, 163.1, 162.9, 156.4, 153.9, 138.3, 133.7, 129.5 (2C), 129.3, 121.8, 114.3, 113.8 (2C), 112.7, 100.5, 97.5, 69.4, 69.1, 68.9, 65.9, 64.3, 62.2, 56.1, 55.6, 20.8, 20.7 (3C); ESI-MS: m/z 706.0 [M + H]+. Anal. calcd for C32H35NO15S (705.17): C, 54.46; H, 5.00. Found: C, 54.34; H, 5.15%.
Data for 5s. Solid; yield 75% (544 mg); mp 99–101 °C; [α]25D +66 (c 1.0, CHCl3); IR (KBr): 3024, 2363,1664, 1622, 1599, 1460, 1218, 1134, 1072, 872, 671 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.41 (s, 1H), 8.22 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.8 Hz, 2H), 7.92 (d, J = 9.1 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.68–7.64 (m, 1H), 7.54–7.51 (m, 1H), 7.42 (d, J = 9.0 Hz, 1H), 6.93 (d, J = 9.0 Hz, 2H), 5.41 (dd, J = 3.4, 10.0 Hz, 1H), 5.35 (dd, J = 1.6, 3.5 Hz, 1H), 5.28 (t, J = 9.8 Hz, 1H), 4.94 (br s, 1H), 4.69 (d, J = 15.1 Hz, 1H), 4.38 (d, J = 15.1 Hz, 1H), 4.26 (dd, J = 8.2, 8.5 Hz, 1H), 4.12–4.04 (m, 2H), 3.77 (s, 3H), 2.11 (s, 3H), 2.02 (s, 3H), 1.98 (s, 3H), 1.97 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.7, 170.2, 170.0, 169.7, 162.9, 155.9, 151.8, 133.7, 133.5, 133.4, 130.7, 129.7 (2C), 129.1, 128.8, 128.6, 126.8, 124.8, 121.7, 115.9, 113.9 (2C), 113.7, 97.4, 69.5, 69.2, 69.1, 65.9, 64.4, 62.3, 55.6, 20.9, 20.8, 20.7 (2C); ESI-MS: m/z 725.9 [M + H]+. Anal. calcd for C35H35NO14S (725.17): C, 57.93; H, 4.86. Found: C, 57.82; H, 4.99%.
Data for 5t. Yellow oil; yield 72% (533 mg); [α]25D +57 (c 1.0, CHCl3); IR (neat): 3016, 2854, 2104, 1561, 1455, 1216, 1160, 1089, 853, 760, 669 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.58 (d, J = 9.0 Hz, 1H), 8.43–8.38 (m, 2H), 8.29–8.25 (m, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.77 (s, 1H), 7.58–7.47 (m, 3H), 7.35 (d, J = 9.1 Hz, 1H), 5.31–5.26 (m, 2H), 5.22 (t, J = 9.4 Hz, 1H), 4.82 (br s, 1H), 4.53 (d, J = 15.3 Hz, 1H), 4.26 (d, J = 15.4 Hz, 1H), 4.15 (dd, J = 4.3, 5.4 Hz, 1H), 3.95–3.88 (m, 2H), 2.08 (s, 3H), 1.96 (s, 3H), 1.95 (s, 3H), 1.89 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.6, 170.1 (2C), 169.6, 154.7, 154.6, 144.9, 136.7, 135.9, 134.5, 134.2, 128.9, 128.6, 128.5, 128.2, 128.1, 126.9, 126.5, 125.2, 124.1, 123.9, 119.2, 117.6, 97.5, 69.1 (2C), 68.9, 65.8, 6.8, 62.1, 20.8, 20.7 (2C), 20.6; ESI-MS: m/z 741.0 [M + H]+. Anal. calcd for C34H32N2O15S (740.15): C, 55.13; H, 4.35. Found: C, 55.01; H, 4.46%.
Data for 5u. Yellow oil; yield 67% (494 mg); [α]25D +77 (c 1.0, CHCl3); IR (KBr): 3009, 2303, 1643, 1506, 1414, 1209, 1081, 998, 759, 688 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.93 (d, J = 8.2 Hz, 2H), 7.78 (s, 1H), 7.71 (br s, 1H), 7.47–7.46 (m, 1H), 7.27–7.24 (m, 3H), 5.35 (d, J = 3.3 Hz, 1H), 5.25 (dd, J = 8.0, 10.4 Hz, 1H), 4.99 (dd, J = 3.3,10.2 Hz, 1H), 4.74 (dd, J = 1.3, 15.4 Hz, 1H), 4.57 (d, J = 8.0 Hz, 1H), 4.47 (dd, J = 1.5, 15.1 Hz, 1H), 4.09–4.06 (m, 2H), 3.87 (t, J = 6.6 Hz, 1H), 2.34 (s, 3H), 2.09 (s, 3H), 1.98 (s, 3H), 1.96 (s, 3H), 1.93(s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.3, 170.1, 169.9, 169.3, 157.4, 150.8, 143.4, 138.8 (2C), 134.1, 130.2, 130.1 (2C), 127.7, 127.8 (2C), 121.1, 118.2, 119.9, 100.9, 70.6 (2C), 68.8, 66.9, 66.5, 61.1, 21.5, 20.6 (2C), 20.4 (2C); ESI-MS: m/z 738.2 [M + H]+. Anal. calcd for C31H32BrNO13S (737.07): C, 50.41; H, 4.37. Found: C, 50.32; H, 4.44%.
Data for 5v. Brown oil; yield 64% (627 mg); [α]25D +28 (c 1.0, CHCl3); IR (neat): 3022, 2603, 1749, 1654, 1599, 1498, 1381, 1219, 1157, 1044, 758, 670 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.99 (d, J = 8.7 Hz, 2H), 7.68 (s, 1H), 7.51–7.37 (m, 3H), 7.29–7.25 (m, 1H), 6.96 (d, J = 8.5 Hz, 2H), 5.27 (d, J = 3.2 Hz, 1H), 5.08–4.99 (m, 2H), 4.97–4.86 (m, 2H), 4.53 (d, J = 10.0 Hz, 1H), 4.43 (d, J = 8.0 Hz, 1H), 4.34 (11.7 Hz, 1H), 4.03–3.99 (m, 2H), 3.84–3.77 (m, 3H), 3.80 (s, 3H), 3.68–3.64 (m, 1H), 3.58–3.55 (m, 1H), 3.48–3.44 (m, 1H), 2.07 (s, 3H), 1.98 (s, 6H), 1.96 (s, 6H), 1.89 (s, 3H), 1.86 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.3, 170.1 (2C), 170.0, 169.7, 169.6, 169.2, 162.9, 157.5, 152.0, 139.5, 133.5, 131.9, 129.5 (2C), 128.1, 127.9, 125.8, 119.3, 116.5, 113.9 (2C), 100.9, 83.6, 76.6, 75.9, 73.5, 71.0, 70.6, 70.1, 69.0, 66.7, 62.2, 60.7, 55.6, 29.1, 20.8, 20.7, 20.6 (4C), 20.5; ESI-MS: m/z 980.0 [M + H]+. Anal. calcd for C43H49NO21S2 (979.22): C, 52.70; H, 5.04. Found: C, 52.58; H, 5.13%.
Data for 5w. White solid; yield 79% (748 mg); mp 121–123 °C; [α]25D −88 (c 1.0, CHCl3); IR (KBr): 3023, 2373,1749, 1634, 1566, 1376, 1253, 1221, 1056, 904, 758, 671 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 8.1 Hz, 2H), 7.66 (s, 1H), 7.50–7.43 (m, 2H), 7.36–7.25 (m, 4H), 5.28 (d, J = 2.7 Hz, 1H), 5.13 (t, J = 9.3 Hz, 1H), 5.04 (dd, J = 8.1, 10.4 Hz, 1H), 4.97–4.87 (m, 2H), 4.64 (dd, J = 1.7, 15.2 Hz, 1H), 4.53 (d, J = 8.1 Hz, 1H), 4.56–4.37 (m, 3H), 4.09–3.99 (m, 3H), 3.83–3.72 (m, 2H), 3.54–3.52 (m, 1H), 2.35 (s, 3H), 2.09 (s, 3H), 1.99 (br s, 15H), 1.89 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.3, 170.1, 170.0, 169.8, 169.7, 169.1, 156.0, 151.9, 143.5, 138.7, 137.5, 131.9, 129.3 (2C), 128.3, 126.2, 127.6 (2C), 125.9, 119.1, 116.4, 101.1, 100.7, 76.1, 72.9, 72.6, 71.6, 70.9, 70.7, 69.1, 66.6, 66.2, 61.9, 60.8, 21.6, 20.8 (2C), 20.6 (4C), 20.5; ESI-MS: m/z 970.2 [M + Na]+. Anal. calcd for C43H49NO21S (947.25): C, 54.48; H, 5.21. Found: C, 54.37; H, 5.32%.
Data for 5x. White solid; yield 73% (766 mg); mp 123–125 °C; [α]25D −51 (c 1.0, CHCl3); IR (KBr): 3021, 2463,1654, 1639, 1566, 1515, 1460, 1218, 1072, 755, 678 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.37 (d, J = 2.6 Hz, 1H), 8.35–8.31 (m, 1H), 7.94 (d, J = 9.1 Hz, 2H), 7.72 (s, 1H), 7.51 (d, J = 9.2 Hz, 1H), 6.96 (d, J = 9.0 Hz, 2H), 5.29 (d, J = 2.6 Hz, 1H), 5.15 (t, J = 9.4 Hz, 1H), 5.04 (dd, J = 8.0, 10.5 Hz, 1H), 4.97–4.88 (m, 2H), 4.61 (dd, J = 1.7, 15.1 Hz, 1H), 4.53 (d, J = 8.0 Hz, 1H), 4.44–4.39 (m, 3H), 4.10–3.99 (m, 3H), 3.84–3.74 (m, 2H), 3.81 (s, 3H), 3.55–3.51 (m, 1H), 2.09 (s, 3H), 2.00 (s, 9H), 1.99 (s, 3H), 1.98 (s, 3H), 1.89 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.2, 170.1, 170.0, 169.8, 169.7, 169.1, 163.3, 154.8, 153.9, 144.9, 135.6, 132.7, 129.7 (2C), 129.2, 126.4, 123.9, 119.5, 117.7, 114.1 (2C), 101.0, 100.8, 75.9, 72.9, 72.4, 71.5, 70.9, 70.7, 69.1, 66.6, 65.9, 61.5, 60.8, 55.7, 20.8 (2C), 20.6 (4C), 20.5; ESI-MS: m/z 1031.1 [M + Na]+. Anal. calcd for C43H48N2O24S (1008.23): C, 51.19; H, 4.80. Found: C, 51.05; H, 4.92%.

General procedure for the preparation of compound (6a–o)

To a solution of 2-azidoacetonitrile (1.0 mmol), appropriate carbohydrate-derived alkyne (1.0 mmol), CuI (0.1 mmol), and salicylaldehyde (1.0 mmol) in THF (5 mL) was dropwise added Et3N (2.0 mmol) at room temperature and the mixture was stirred at room temperature for 6 h. The reaction mixture was concentrated and the residue was diluted with CH2Cl2 (20 mL) and washed successively with H2O (10 mL) and brine (10 mL). The organic layer was dried (Na2SO4) and concentrated. The resulting crude product was purified by column chromatography (basic alumina, hexane–EtOAc; 1[thin space (1/6-em)]:[thin space (1/6-em)]1) to give the corresponding glycosylated 3-triazolyl-2-iminocoumarin derivatives.
Data for 6a. White solid; yield 76% (435 mg); mp 102–104 °C; [α]25D +87 (c 1.0, CHCl3); IR (KBr): 3019, 2361, 1711, 1649, 1511, 1460, 1389, 1229, 1069, 750, 699 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.71 (s, 1H), 7.95 (s, 1H), 7.41–7.36 (m, 2H), 7.17–7.08 (m, 2H), 5.13 (t, J = 9.3 Hz, 1H), 5.06–4.92 (m, 3H), 4.84 (d, J = 12.8 Hz, 1H), 4.63 (d, J = 8.1 Hz, 1H), 4.22 (dd, J = 4.7, 12.8 Hz, 1H), 4.10 (dd, J = 2.3, 12.5 Hz, 1H), 3.71–3.66 (m, 1H), 2.02 (s, 3H), 1.95 (s, 3H), 1.93 (s, 3H), 1.91 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.7, 170.2, 169.5 (2C), 152.5, 143.4, 131.7, 128.7 (2C), 127.8, 125.3, 124.4 (2C), 118.2, 115.4, 99.5, 72.8, 71.9, 71.1, 68.3, 62.5, 61.9, 20.7, 20.6, 20.5 (2C); ESI-MS: m/z 573.1 [M + H]+. Anal. calcd for C26H28N4O11 (572.17): C, 54.54; H, 4.93. Found: C, 54.41; H, 5.07%.
Data for 6b. White solid; yield 75% (429 mg); mp 120–122 °C; [α]25D −73 (c 1.0, CHCl3); IR (KBr): 3021, 2461, 1711, 1659, 1515, 1460, 1389, 1219, 1072, 759, 671 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.74 (s, 1H), 7.96 (s, 1H), 7.68 (s, 1H), 7.39–7.36 (m, 2H), 7.16–7.08 (m, 2H), 5.33 (d, J = 2.3 Hz, 1H), 5.18 (dd, J = 8.1, 10.5 Hz, 1H), 4.97–4.93 (m, 2H), 4.86–4.81 (m, 1H), 4.61 (d, J = 8.1 Hz, 1H), 4.13–4.09 (m, 2H), 3.92–3.88 (m, 1H), 2.08 (s, 3H), 1.99 (s, 3H), 1.95 (s, 3H), 1.89 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.3, 170.1, 169.6, 152.5, 143.5, 131.7, 128.7 (2C), 127.7, 125.3, 124.4 (2C), 118.3, 115.4, 100.0, 70.9, 70.8, 68.7, 67.1, 62.5, 61.4, 20.7, 20.6, 20.5 (2C); ESI-MS: m/z 573.1 [M + H]+. Anal. calcd for C26H28N4O11 (572.17): C, 54.54; H, 4.93. Found: C, 54.41; H, 5.07%.
Data for 6c. Solid; yield 76% (435 mg); mp 117–119 °C; [α]25D +61 (c 1.0, CHCl3); IR (neat): 3019, 2400, 1745, 1630, 1564, 1420, 1215, 1082, 756 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.77 (s, 1H), 7.95 (s, 1H), 7.69 (s, 1H), 7.39–7.34 (m, 2H), 7.15–7.07 (m, 2H), 5.29–5.19 (m, 3H), 4.94 (br s, 1H), 4.82 (d, J = 12.5 Hz, 1H), 4.70 (d, J = 12.4 Hz, 1H), 4.23 (dd, 5.3, 12.3 Hz, 1H), 4.07–4.01 (m, 2H), 2.07 (s, 3H), 2.04 (s, 3H), 1.95 (s, 3H), 1.89 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.7, 169.9, 169.8, 169.7, 152.5, 142.8, 131.6, 128.7 (2C), 127.8, 125.4, 124.3 (2C), 118.2, 115.3, 96.9, 69.4, 69.0, 68.7, 66.0, 62.3, 60.8, 20.8, 20.7, 20.6 (2C); ESI-MS: m/z 573.1 [M + H]+. Anal. calcd for C26H28N4O11 (572.17): C, 54.54; H, 4.93. Found: C, 54.41; H, 5.07%.
Data for 6d. Colorless; yield 62% (386 mg); [α]25D −53 (c 1.0, CHCl3); IR (neat): 3012, 2019, 1718, 1614, 1355, 1301, 1110, 1019, 911, 729, 668 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.86 (s, 1H), 8.71 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.86–7.79 (m, 2H), 7.64–7.57 (m, 2H), 7.48–7.45 (m, 1H), 7.24 (d, J = 8.5 Hz, 1H), 5.34 (d, J = 2.9 Hz, 1H), 5.20 (dd, J = 8.0, 10.3 Hz, 1H), 5.00–4.95 (m, 2H), 4.88 (d, J = 12.4 Hz, 1H), 4.63 (d, J = 8.0 Hz, 1H), 4.18–4.09 (m, 2H), 3.91 (t, J = 6.9 Hz, 1H), 2.09 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H), 1.91 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.5, 170.3, 170.2, 169.7, 151.9, 143.6, 139.2, 132.8, 130.2, 129.5, 128.9, 128.4 (2C), 125.9 (2C), 123.7, 121.6, 115.6, 112.1, 100.0, 70.9, 70.8, 68.7, 67.1, 62.5, 61.4, 20.8, 20.7 (2C), 20.6; ESI-MS: m/z 623.1 [M + H]+. Anal. calcd for C30H30N4O11 (622.19): C, 57.88; H, 4.86. Found: C, 57.77; H, 4.93%.
Data for 6e. Yellow oil; yield 63% (373 mg); [α]25D +43 (c 1.0, CHCl3); IR (neat): 3022, 2129, 1618, 1524, 1355, 1321, 1209, 1019, 911, 868, 729, 668 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.87 (s, 1H), 7.99 (s, 1H), 7.86 (s, 1H), 7.60 (d, J = 2.2 Hz, 1H), 7.54 (dd, J = 2.2, 8.7 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 5.30 (dd, J = 3.6, 10.0 Hz, 1H), 5.26 (dd, J = 1.7, 3.5 Hz, 1H), 5.09 (t, J = 9.8 Hz, 1H), 4.92 (d, J = 1.5 Hz, 1H), 4.89 (d, J = 12.4 Hz, 1H), 4.75 (d, J = 12.4 Hz, 1H), 4.01–3.94 (m, 1H), 2.15 (s, 3H), 2.04 (s, 3H), 1.97 (s, 3H), 1.25 (d, J = 6.5 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 170.1, 170.0, 169.9, 151.9, 151.4, 143.3, 134.2, 130.8, 126.1, 125.8, 125.4, 120.1, 117.1, 116.8, 96.9, 71.1, 69.7, 69.1, 66.7, 60.7, 20.9, 20.8, 20.7, 17.4; ESI-MS: m/z 593.1 [M + H]+. Anal. calcd for C24H25BrN4O9 (592.08): C, 48.58; H, 4.25. Found: C, 48.47; H, 4.34%.
Data for 6f. Brown oil; yield 55% (342 mg); [α]25D +47 (c 1.0, CHCl3); IR (neat): 3010, 2202,1744, 1563, 1415, 1360, 1119, 1044, 980, 758, 669 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.95 (s, 1H), 4.74 (s, 1H), 8.18 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.71 (s, 1H), 7.67–7.63 (m, 1H), 7.54–7.50 (m, 1H), 7.30–7.27 (m, 1H), 5.41–5.30 (m, 3H), 5.05 (d, J = 1.6 Hz, 1H), 4.94 (d, J = 12.4 Hz, 1H), 4.81 (d, J = 12.4 Hz, 1H), 4.34 (dd, J = 5.1, 12.3 Hz, 1H), 4.18–4.13 (m, 2H), 2.17 (s, 3H), 2.15 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.7, 170.0, 169.8, 169.7, 151.9, 142.9, 132.7, 130.2, 129.4, 128.9 (2C), 128.4 (2C), 125.9 (2C), 125.4, 121.5, 115.7, 111.9, 97.0, 69.5, 69.1, 68.8, 66.1, 62.4, 60.9, 20.9, 20.8, 20.7, 20.6; ESI-MS: m/z 623.1 [M + H]+. Anal. calcd for C30H30N4O11 (622.19): C, 57.88; H, 4.86. Found: C, 57.77; H, 4.94%.
Data for 6g. White foam; yield 74% (380 mg); [α]25D −72 (c 1.0, CHCl3); IR (neat): 3020, 2402,1744, 1663, 1515, 1360, 1219, 1044, 758, 669 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.76 (s, 1H), 7.94 (s, 1H), 7.69 (s, 1H), 7.38–7.34 (m, 2H), 7.14–7.06 (m, 2H), 5.24–5.18 (m, 2H), 5.01 (t, J = 9.9 Hz, 1H), 4.84 (d, J = 1.4 Hz, 1H), 4.81 (d, J = 12.2 Hz, 1H), 4.67 (d, 12.2 Hz, 1H), 3.94–3.87 (m, 1H), 2.06 (s, 3H), 1.96 (s, 3H), 1.89 (s, 3H), 1.17 (d, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 170.0, 169.9, 169.8, 152.5, 143.1, 131.6, 128.7 (2C), 127.7, 125.3, 124.3 (2C), 118.3, 115.4, 96.9, 71.0, 69.7, 69.1, 66.6, 60.6, 20.9, 20.8, 20.7, 17.4; ESI-MS: m/z 515.1 [M + H]+. Anal. calcd for C24H26N4O9 (514.17): C, 56.03; H, 5.09. Found: C, 55.91; H, 5.24%.
Data for 6h. Light yellow syrup; yield 73% (428 mg); [α]25D +69 (c 1.0, CHCl3); IR (neat): 3010, 2302,1684, 1525, 1360, 1119, 1024, 758, 667 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.59 (s, 1H), 7.91 (s, 1H), 7.73 (s, 1H), 7.39-7.32 (m, 2H), 7.14–7.06 (m, 2H), 5.28 (dd, J = 3.4, 10.0 Hz, 1H), 5.22–5.17 (m, 2H), 4.81 (br s, 1H), 4.19 (dd, J = 5.3, 12.3 Hz, 1H), 4.06-3.96 (m, 2H), 3.85–3.71 (m, 2H), 3.09–3.04 (m, 2H), 2.08 (s, 3H), 2.04 (s, 3H), 1.94 (s, 3H),1.92 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.5, 169.9, 169.6 (2C), 152.4, 144.4, 136.9, 133.7, 128.5 (2C), 127.3, 124.2 (2C), 119.8, 115.3, 97.6, 76.9, 69.5, 69.1, 68.6, 66.0, 62.3, 26.1, 20.8, 20.7, 20.6, 20.5; ESI-MS: m/z 587.1 [M + H]+. Anal. calcd for C27H30N4O11 (586.19): C, 55.29; H, 5.16. Found: C, 55.21; H, 5.25%.
Data for 6i. Semi solid; yield 52% (473 mg); [α]25D +89 (c 1.0, CHCl3); IR (neat): 3010, 2119, 1608, 1474, 1375, 1321, 1259, 1120, 1089, 911, 838, 677 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.90 (s, 1H), 8.82 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.9 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.71–7.67 (m, 2H), 7.57–7.53 (m, 1H), 7.34 (d, J = 9.1 Hz, 1H), 5.35 (d, J = 3.1 Hz, 1H), 5.19 (t, J = 9.3 Hz, 1H), 5.11 (dd, J = 8.0, 10.5 Hz, 1H), 5.00–4.93 (m, 4H), 4.68 (d, J = 8.0 Hz, 1H), 4.56–4.49 (m, 2H), 4.17–4.08 (m, 3H), 3.90–3.82 (m, 2H), 3.70–3.66 (m, 1H), 2.15 (s, 3H), 2.14 (s, 3H), 2.06 (s, 6H), 2.04 (s, 3H).2.03 (s, 3H), 1.97 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.5, 170.4, 170.2, 170.1, 169.8 (2C), 169.1, 151.9, 143.6, 132.7, 130.3, 129.5, 128.9, 128.4 (2C), 125.9 (2C), 125.2, 124.3, 121.6, 115.7, 112.1, 101.0, 99.3, 76.2, 72.8 (2C), 71.5, 71.0, 70.7, 69.1, 66.7, 62.5, 62.0, 60.8, 20.9, 20.8, 20.7, 20.6 (3C), 20.5; ESI-MS: m/z 911.2 [M + H]+. Anal. calcd for C42H46N4O19 (910.27): C, 55.38; H, 5.09. Found: C, 55.29; H, 5.18%.
Data for 6j. White solid; yield 72% (619 mg); mp 118–120 °C; [α]25D −49 (c 1.0, CHCl3); IR (KBr): 3024, 2163,1727, 1654, 1593, 1460, 1379, 1226, 1114, 855, 773 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.69 (s, 1H), 7.96 (s, 1H), 7.42–7.33 (m, 2H), 7.17 7.09 (m, 2H), 5.27 (d, J = 3.1 Hz, 1H), 5.11 (t, J = 9.9 Hz, 1H), 5.03 (dd, J = 8.0, 10.5 Hz, 1H), 4.93–4.78 (m, 4H), 4.58 (d, J = 8.0 Hz, 1H), 4.46–4.40 (m, 2H), 4.07–3.98 (m, 3H), 3.82–3.73 (m, 2H), 3.60–3.57 (m, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 1.98 (s, 6H), 1.96 (s, 3H), 1.94 (s, 3H).1.89 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.5, 170.4, 170.2, 170.1, 169.8, 169.7, 169.1, 152.5, 136.9, 133.7, 131.7, 128.7 (2C), 124.3 (2C), 119.8, 116.8, 115.4, 101.0, 99.2, 76.2, 72.8, 72.7, 71.5, 70.9, 70.7, 69.1, 66.6, 62.4, 62.0, 60.8, 20.9, 20.8, 20.7, 20.6 (3C), 20.5; ESI-MS: m/z 861.1 [M + H]+. Anal. calcd for C38H44N4O19 (860.26): C, 53.02; H, 5.15. Found: C, 52.89; H, 5.27%.
Data for 6k. Yellow oil; yield 65% (382 mg); [α]25D +38 (c 1.0, CHCl3); IR (neat): 3024, 2303,1654, 1639, 1515, 1420, 1208, 1072, 759, 673 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.69 (s, 1H), 7.98 (s, 1H), 7.68 (s, 1H), 7.41–7.36 (m, 2H), 7.17–7.08 (m, 2H), 5.38 (d, J = 3.2 Hz, 1H), 5.22 (t, J = 9.9 Hz, 1H), 4.98 (dd, J = 3.4, 10.5 Hz, 1H), 4.54 (d, J = 10.0 Hz, 1H), 4.14–4.06 (m, 3H), 3.94–3.88 (m, 2H), 2.09 (s, 3H), 1.97 (s, 6H), 1.90 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.3, 170.0, 169.7, 152.5, 136.9, 131.6, 128.7 (2C), 127.7, 124.5, 124.3 (2C), 118.3, 115.4, 83.1, 74.5, 71.8, 67.3, 67.2, 61.5, 24.3, 20.8, 20.7, 20.6, 20.5; ESI-MS: m/z 589.0 [M + H]+. Anal. calcd for C26H28N4O10S (588.15): C, 53.06; H, 4.79. Found: C, 52.94; H, 4.91%.
Data for 6l. Light brown syrup; yield 62% (543 mg); [α]25D −57 (c 1.0, CHCl3); IR (neat): 3019, 2400, 1749,1628, 1515, 1405, 1216, 1042, 756, 668 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.66 (s, 1H), 7.99 (s, 1H), 7.65 (s, 1H), 7.43–7.37 (m, 2H), 7.18–7.09 (m, 2H), 5.28 (d, J = 3.0 Hz, 1H), 5.12 (t, J = 9.1 Hz, 1H), 5.03 (dd, J = 8.0, 10.4 Hz, 1H), 4.94–4.86 (m, 2H), 4.50 (d, J = 10.0 Hz, 1H), 4.44–4.39 (m, 2H), 4.09–3.99 (m, 4H), 3.87–3.73 (m, 3H), 3.62–3.58 (m, 1H), 2.08 (s, 3H), 2.05 (s, 3H), 1.99 (s, 6H), 1.96 (s, 3H), 1.95 (s, 3H), 1.89 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.3, 170.2, 170.1, 169.7, 169.6, 169.1, 152.5, 136.9, 133.7, 131.6, 128.7 (2C), 127.8, 124.4 (2C), 118.3, 115.4, 101.1, 82.2, 76.6, 76.1, 73.8, 70.9, 70.7, 70.3, 69.1, 62.2, 60.9, 24.2, 20.9, 20.8, 20.7, 20.6 (3C), 20.5; ESI-MS: m/z 877.1 [M + H]+. Anal. calcd for C38H44N4O18S (876.23): C, 52.05; H, 5.06. Found: C, 51.94; H, 5.18%.
Data for 6m. Yellow oil; yield 66% (397 mg); [α]25D +51 (c 1.0, CHCl3); IR (neat): 3029, 2210, 1849, 1628, 1415, 1322, 1042, 988, 756, 667 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.69 (s, 1H), 7.90 (s, 1H), 7.61 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 6.75–6.65 (m, 2H), 5.36 (br s, 1H), 5.18 (dd, J = 8.1, 10.5 Hz, 1H), 5.00–4.95 (m, 2H), 4.85–4.78 (m, 1H), 4.66–4.63 (m, 1H), 4.15–4.10 (m, 2H), 3.98–3.93 (m, 1H), 3.82 (s, 3H), 2.10 (s, 3H), 2.02 (s, 3H), 1.97 (s, 3H), 1.93 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.1, 170.0, 169.6, 162.8, 154.1, 145.5, 129.6 (2C), 128.3, 125.2, 123.5, 113.0, 111.6 (2C), 100.5, 70.8 (2C), 68.7, 67.1, 62.5, 61.4, 55.8, 20.7, 20.6 (2C), 20.5; ESI-MS: m/z 603.1 [M + H]+. Anal. calcd for C27H30N4O12 (602.18): C, 53.82; H, 5.02. Found: C, 53.73; H, 5.11%.
Data for 6n. Yellow oil; yield 56% (347 mg); [α]25D +38 (c 1.0, CHCl3); IR (neat): 3029, 2210, 1849, 1628, 1415, 1322, 1042, 988, 756, 667 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.81 (s, 1H), 7.85 (s, 1H), 7.58 (s, 1H), 7.31–7.28 (m, 2H), 7.05–6.97 (m, 2H), 5.59 (t, J = 9.5 Hz, 1H), 5.31 (br s, 1H), 4.99 (dd, J = 3.0, 9.9 Hz, 1H), 4.72 (d, J = 14.4 Hz, 1H), 4.47 (d, J = 10.0 Hz, 1H), 4.26 (d, J = 14.4 Hz, 1H), 4.05 (br s, 3H), 2.02 (s, 3H), 1.87 (s, 3H), 1.82 (s, 3H), 1.80 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.4, 170.2, 169.9, 169.1, 152.6, 136.9, 131.9, 128.8 (2C), 128.2, 127.1, 124.5 (2C), 119.8, 115.4, 86.2, 75.5, 71.3, 66.9, 63.1, 61.4, 47.6, 20.7, 20.6 (2C), 20.5; ESI-MS: m/z 621.1 [M + H]+. Anal. calcd for C26H28N4O12S (620.14): C, 50.32; H, 4.55. Found: C, 50.24; H, 4.63%.
Data for 6o. Yellow oil; yield 56% (364 mg); [α]25D +63 (c 1.0, CHCl3); IR (neat): 3011, 2320, 1725, 1520, 1480, 1115, 1082, 988, 778 cm−1; 1H NMR (400 MHz, CDCl3): δ 8.87 (s, 1H), 7.99 (s, 1H), 7.86 (s, 1H), 7.59 (d, J = 2.5 Hz, 1H), 7.53 (dd, J = 2.3, 8.7, 1H), 7.05 (d, J = 8.6 Hz, 1H), 5.35–5.25 (m, 3H), 5.00 (d, J = 1.6 Hz, 1H), 4.89 (d, J = 12.6 Hz, 1H), 4.77 (d, J = 12.5 Hz, 1H), 4.30 (dd, 5.4, 12.5 Hz, 1H), 4.14–4.05 (m, 2H), 2.14 (s, 3H), 2.12 (s, 3H), 2.03 (s, 3H), 1.97 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 170.7, 169.9, 169.8, 169.7, 151.9, 151.4, 142.9, 134.2, 130.8, 126.2, 125.7, 125.5, 120.1, 117.1, 116.7, 97.0, 69.5, 69.0, 68.8, 66.1, 62.4, 60.8, 20.8 (2C), 20.7, 20.6; ESI-MS: m/z 651.1 [M + H]+. Anal. calcd for C26H27BrN4O11 (650.08): C, 47.94; H, 4.18. Found: C, 47.85; H, 4.27%.

Acknowledgements

Author gratefully acknowledges the Director of CSIR-CDRI for financial support and SAIF Division of CSIR-CDRI for providing the spectroscopic and analytical data. CDRI communication no. 8587.

Notes and references

  1. J. Zhu and H. E. Bienayme, Multicomponent Reactions, Wiley-VCH, Weinheim, 2005 Search PubMed.
  2. (a) A. Domling and I. Ugi, Angew. Chem., Int. Ed., 2000, 45, 3168 CrossRef; (b) D. J. Ramon and M. Yus, Angew. Chem., Int. Ed., 2005, 44, 1602 CrossRef CAS PubMed; (c) A. Domling, Chem. Rev., 2006, 106, 17 CrossRef PubMed; (d) B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439 CrossRef CAS PubMed; (e) A. Domling, W. Wang and K. Wang, Chem. Rev., 2012, 112, 3083 CrossRef CAS PubMed; (f) P. Slobbe, E. Ruijter and R. V. A. Orru, MedChemComm, 2012, 3, 1189 RSC; (g) C. Hulme and V. Gore, Curr. Med. Chem., 2003, 10, 51 CrossRef CAS; (h) D. M. D'Souza and T. J. J. Muller, Chem. Soc. Rev., 2007, 36, 1095 RSC; (i) P. Lu and Y. Wang, Chem. Soc. Rev., 2012, 41, 5687 RSC.
  3. (a) M. S. Al-Said, M. G. El-Gazzar and M. M. Ghorab, Eur. J. Chem., 2012, 3, 228 CrossRef CAS PubMed; (b) C. N. O'Challaghan and M. L. Conalty, Proc. R. Ir. Acad., Sect. B, 1979, 79, 87 Search PubMed; (c) V. Hariprassad, T. T. Talele and V. M. Kulkarni, Pharm. Pharmacol. Commun., 1998, 4, 365 Search PubMed; (d) T. R. Burke Jr, M. Fesen, A. Mazumder, J. Yung, J. Wang, A. M. Carothers, D. Grunberger, J. Driscoll, Y. Pommier and K. Kohn, J. Med. Chem., 1995, 38, 4171 CrossRef CAS; (e) S. Sardari, S. Nishibe and M. Daneshtalab, Stud. Nat. Prod. Chem., 2000, 23, 335 CAS.
  4. (a) T. R. Burke Jr, B. Lim, V. E. Marquez, Z. H. Li, J. B. Bolen, I. Stefanova and I. D. Horak, J. Med. Chem., 1993, 36, 425 CrossRef CAS; (b) T. A. Hill, A. Mariana, C. P. Gordon, L. R. Odell, M. J. Robertson, A. B. McGeachie, N. Chau, J. A. Daniel, N. N. Gorgani, P. J. Robinson and A. McCluskey, J. Med. Chem., 2010, 53, 4094 CrossRef CAS PubMed; (c) C. N. O'Callaghan and M. L. Conalty, Proc. R. Ir. Acad., Sect. B, 1979, 6, 87 Search PubMed.
  5. A. Varki, Glycobiology, 1993, 3, 97 CrossRef CAS.
  6. (a) D. Guo, T. Chen, D. Ye, J. Xu, H. Jiang, K. Chen, H. Wang and H. Liu, Org. Lett., 2011, 13, 2884 CrossRef CAS PubMed; (b) K. Komatsu, Y. Urano, H. Kojima and T. Nagano, J. Am. Chem. Soc., 2007, 129, 13447 CrossRef CAS PubMed.
  7. (a) P. Sears and C. H. Wong, Cell. Mol. Life Sci., 1998, 54, 223 CrossRef CAS; (b) N. Johnsson and K. Johnsson, ChemBioChem, 2003, 4, 803 CrossRef CAS PubMed.
  8. (a) K. A. Stubbs, A. Scaffidi, A. W. Debowski, B. L. Mark, R. V. Stick and D. J. Vocadlo, J. Am. Chem. Soc., 2008, 130, 327 CrossRef CAS PubMed; (b) A. Giannis, Angew. Chem., Int. Ed. Engl., 1994, 33, 178 CrossRef; (c) C. T. Yuen, K. Bezouska, J. O. Brien, M. Stoll, R. Lemoine, A. Lubineau, M. Kiso, A. Hasegava, N. J. Bockovivh, K. C. Nicolaou and T. Feizi, J. Biol. Chem., 1994, 269, 1595 CAS; (d) P. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson and R. A. Dwek, Science, 2001, 291, 2370 CrossRef CAS.
  9. (a) S. D. Sarker and P. G. Waterman, J. Nat. Prod., 1995, 58, 1109 CrossRef CAS; (b) D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev., 2003, 103, 893 CrossRef CAS PubMed; (c) B. Ngameni, M. Touaibia, R. Patnam, A. Belkaid, P. Sonna, B. T. Ngadjui, B. Anabi and R. Roy, Phytochemistry, 2006, 67, 2573 CrossRef CAS PubMed; (d) J. Su, Z.-J. Wu, W.-D. Zhang, C. Zhang, H.-L. Li, R.-H. Liu and Y.-H. Shen, Chem. Pharm. Bull., 2008, 56, 589 CrossRef CAS.
  10. D. Batsurén, E. Kh Batirov, V. M. Malikov and M. R. Yagudaev, Khim. Prir. Soedin., 1983, 142 (Chem. Nat. Compd., 1983, 19, 134) Search PubMed.
  11. (a) D. Batsurén, É. Kh. Batirov and V. M. Malikov, Khim. Prir. Soedin., 1982, 650 (Chem. Nat. Compd., 1983, 18, 616) Search PubMed; (b) A. D. Vdovin, D. Batsurén, É. Kh. Batirov, M. R. Yagudaev and V. M. Malikov, Khim. Prir. Soedin., 1983, 441 (Chem. Nat. Compd., 1984, 19, 413) CAS; (c) K. Hirakura, I. Saida, T. Fukai and T. Nomura, Heterocycles, 1985, 23, 2239 CrossRef CAS.
  12. S. D. Aminov and A. A. Vakhabov, Dokl. Akad. Nauk USSR, 1985, 44 (Indian Chem. Abstr., 1986, 104, 12260) CAS.
  13. (a) Y. L. Garazd, E. M. Kornienko, L. N. Maloshtan, M. M. Garazd and V. P. Khilya, Chem. Nat. Compd., 2005, 5, 508 CrossRef PubMed; (b) J. A. Burlison, C. Avila, G. Vielhauer, D. J. Lubbers, J. Holzbeierlein and B. S. J. Blagg, J. Org. Chem., 2008, 73, 2130 CrossRef CAS PubMed; (c) A. C. Scatigno, S. S. Garrido and R. Marchetto, J. Pept. Sci., 2004, 10, 566 CrossRef CAS PubMed; (d) S. Song, Y. X. Li, Z. M. Feng, J. S. Jiang and P. C. Zhang, J. Nat. Prod., 2010, 73, 177 CrossRef CAS PubMed.
  14. (a) R. S. Coleman and M. L. Madaras, J. Org. Chem., 1998, 63, 5700 CrossRef CAS; (b) A. J. Burlison, C. Avila, G. Vielhauer, J. D. Lubbers, J. Holzbeierlein and B. S. J. Blagg, J. Org. Chem., 2008, 73, 2130 CrossRef PubMed.
  15. (a) J.-A. Mahling and R. R. Schmidt, Liebigs Ann., 1995, 467 CrossRef CAS; (b) K. Toshima, G. Matsuo, T. Ishizuka, Y. Ushiki, M. Nakata and S. Matsumura, J. Org. Chem., 1998, 63, 2307 CrossRef CAS; (c) E. E. Telbani, S. E. Desoky, M. A. Hammad, A. R. H. A. Rahman and R. R. Schmidt, Eur. J. Org. Chem., 1998, 2317 CrossRef; (d) K. Oyama and T. Kondo, J. Org. Chem., 2004, 69, 5240 CrossRef CAS PubMed.
  16. (a) P. G. Hultin, Curr. Top. Med. Chem., 2005, 5, 1299 CrossRef CAS; (b) N. N. Saha, V. N. Desai and D. D. Dhavale, J. Org. Chem., 1999, 64, 1715 CrossRef CAS; (c) D. Giguère, P. Cloutier and R. Roy, J. Org. Chem., 2009, 74, 8480 CrossRef PubMed; (d) K. Palanichamy, S. R. Suravarapu and K. P. Kaliappan, Synthesis, 2012, 1841 CAS.
  17. (a) R. Huisgen, Pure Appl. Chem., 1989, 61, 613 CrossRef CAS; (b) R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, New York, 1984, vol. 1 Search PubMed.
  18. (a) M. Meldal and C. W. Tornoe, Chem. Rev., 2008, 108, 2952 CrossRef CAS PubMed; (b) S. Dedola, S. A. Nepogodiev and R. A. Field, Org. Biomol. Chem., 2007, 7, 1006 RSC; (c) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596 CrossRef CAS.
  19. (a) M. P. Cassidy, J. Raushel and V. V. Fokin, Angew. Chem., Int. Ed., 2006, 45, 3154 CrossRef CAS PubMed; (b) M. Whiting and V. V. Fokin, Angew. Chem., Int. Ed., 2006, 45, 3157 CrossRef CAS PubMed; (c) S. H. Cho, E. J. Yoo, I. Bae and S. Chang, J. Am. Chem. Soc., 2005, 127, 16046 CrossRef CAS PubMed; (d) X. Xu, D. Cheng, J. Li, H. Guo and J. Yan, Org. Lett., 2007, 9, 1585 CrossRef CAS PubMed; (e) I. Bae, H. Han and S. Chang, J. Am. Chem. Soc., 2005, 127, 2038 CrossRef CAS PubMed; (f) W. Qian, A. Amegadzie, D. Winternheimer and J. Allen, Org. Lett., 2013, 15, 2986 CrossRef CAS PubMed.
  20. (a) H. B. Mereyala and S. R. Gurrala, Carbohydr. Res., 1998, 307, 351 CrossRef CAS; (b) T. Hasegawa, M. Numata, S. Okumura, T. Kimura, K. Sakurai and S. Shinkai, Org. Biomol. Chem., 2007, 5, 2404 RSC; (c) F. M. Ibatullin, K. A. Shabalin, J. V. Jänis and A. G. Shavvac, Tetrahedron Lett., 2003, 44, 7961 CrossRef CAS PubMed.
  21. (a) E. Perez, M. Moreno-Manas, R. M. Sebastian, A. Vallribera and A. Jutand, Eur. J. Inorg. Chem., 2010, 7, 1013 CrossRef; (b) H. Guo and G. Zhao, Asian J. Chem., 2008, 20, 2781 CAS; (c) R. R. Gagne, C. L. Spiro, T. J. Smith, C. A. Hamann, W. R. Thies and A. D. Shiemke, J. Am. Chem. Soc., 1981, 103, 4073 CrossRef CAS.
  22. (a) R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett., 2004, 6, 2853 CrossRef PubMed; (b) V. O. Rodionov, S. I. Presolski, S. Gardinier, Y.-H. Lim and M. G. Finn, J. Am. Chem. Soc., 2007, 129, 12696 CrossRef CAS PubMed; (c) V. O. Rodionov, S. I. Presolski, D. Daz, V. V. Fokin and M. G. Finn, J. Am. Chem. Soc., 2007, 129, 12705 CrossRef CAS PubMed; (d) C. Shao, X. Wang, Q. Zhang, S. Luo, J. Zhao and Y. Hu, J. Org. Chem., 2011, 76, 6832 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: Copies of 1H and 13C NMR spectra are provided. See DOI: 10.1039/c3ra46844e

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.