Three component synthesis of 2-oxindole via sequential Michael addition, intramolecular cyclization and aromatization

Muthusamy Boominathana, Muthupandi Nagaraja, Shanmugam Muthusubramanian*a and Nattamai Bhuvaneshb
aSchool of Chemistry, Madurai Kamaraj University, Madurai – 625 021, India. E-mail: muthumanian2001@yahoo.com; Fax: +91-452-2459139; Tel: +91-452-2458246
bX-ray Diffraction Laboratory, Department of Chemistry, Texas A&M University, College station, Texas 77842, USA

Received 10th March 2014 , Accepted 7th April 2014

First published on 9th April 2014


Abstract

An easy metal free access to the synthesis of medicinally promising 2-oxindole derivatives via a tandem enamine formation – Michael addition – regiospecific intramolecular cyclization – aromatization sequence promoted by trifluoroacetic acid has been described. This three component reaction is regiospecific with good yield and satisfactory atom economy.


Introduction

The 2-oxindole core is an important privileged heterocyclic scaffold in numerous biologically active pharmacophores and natural products. Hence, new selective methods for the synthesis of 2-oxindole derivatives assume importance in organic and pharmaceutical chemistry.1 The 2-oxindole skeleton is found in many natural products like notamide C, elacomine, alstonisine, surugatoxin, welwitindolinone A, salacin, uncarine E, spirotryprostatin A, coerulescine, horsfiline, maremycins A and convolutamydines and biologically active molecules like AG-041R, SSR-149415, SU4984, GW491619, SU11248, WAY-255348, CX-6258, chaperone and tenidap (Fig. 1).2–10 2-Oxindole derivatives also exhibit anti-anxiety, anti-depression, antiangiogenic, anticancer and other biological activities.11–17 Structure–activity relationship studies have also been carried out with this nucleus.18
image file: c4ra02091j-f1.tif
Fig. 1 Representative examples of biologically active molecules with 2-oxindole moiety.

2-Oxindole derivatives can be accessed through Heck reaction,19 Stille coupling in carbamoyl chloride,20 radical cyclization,21 Pd- or Rh-catalyzed cyclization,22 carbonylation of 2-alkynylanilines,23 transition metal catalyzed cyclization of α,β-acetylenic amides24,25 and nucleophilic addition of oxoindoles to carbonyl compounds.26 Most of these protocols suffer from limitations such as the utilization of expensive metal catalysts, use of additives and cofactors, complex starting materials, harsh reaction conditions, long reaction times, multistep syntheses or difficult purification.18,24–28 Therefore, the development of metal free strategies for the assembly and derivatization of 2-oxindole from readily available starting materials would be a significant contribution to biomedical community. Multicomponent reactions29,30 allow the generation of complex structures involving the simultaneous formation of two or more bonds in a single step from readily available precursors providing opportunities for the construction of new rings with molecular diversity.

Results and discussion

Recently, a sequential one-pot six-component reaction to generate 2-oxindoles using palladium catalyst has been reported.31 Similarly, a copper catalyzed three component reaction towards the synthesis of 2-oxindole involving N-methyl isatin, phenylacetylene and aniline derivatives has also been developed.32 As part of our continuing interest in proposing newer routes for the construction of heterocycles, we decided to explore a viable metal free synthesis of 2-oxindoles and thus the present investigation reports a regiospecific, three component, trifluoroacetic acid mediated synthesis of medicinally promising 2-oxindoles (4) from cyclohexane-1,3-dione (1), primary amine (2) and diethyl/methyl acetylenedicarboxylate (3) involving enamine formation – Michael addition – intramolecular regiospecific cyclization – aromatization sequence (Scheme 1).
image file: c4ra02091j-s1.tif
Scheme 1 Metal free synthesis of new 2-oxindole derivatives (4a–u).

The reaction has been carried out with cyclohexane-1,3-dione (1), benzylamine (2, R1 = CH2Ph) and diethyl acetylenedicarboxylate (3, R2 = OEt) in different solvents to choose the appropriate solvent system for this transformation. It is found that the reaction produced relatively poor yield in solvents like THF, acetonitrile, 1,2-dichloroethane, ethanol and dimethyl sulfoxide, while the use of aromatic solvents like benzene, toluene and p-xylene is found to be successful ending up in good to excellent yield of 2-oxindole as a single regioisomer. Ultimately, toluene is found to be the solvent of choice, requiring shorter reaction time and providing higher yield than the other examined solvents. The various attempts are summarized in Table 1.

Table 1 Screening of the solvents for the synthesis of 2-oxindole 4a (R1 = CH2Ph and R2 = OEt)
Entry Solvent Time (h) Yield (%)
1 THF 3.50 40
2 CH3CN 3.00 36
3 C2H4Cl2 3.50 22
4 Ethanol 2.00 48
5 DMSO 3.00 60
6 Benzene 0.75 80
7 p-Xylene 0.75 85
8 Toluene 0.50 92


Similarly, the effect of various acid catalysts on the reaction has also been investigated and it has been noticed that the use of inorganic acid derivatives of phosphorous and titanium resulted in relatively poor yield. It was also found that camphorsulfonic acid, p-toluenesulfonic acid and trifluoromethanesulfonic acid have led to moderate productivity, compared to acetic acid, trichloroacetic acid and trifluoroacetic acid. Trifluoroacetic acid has been identified as the suitable acid for this reaction, which effectively catalyzing the reaction with quantitative yield (Table 2).

Table 2 Screening of the acid catalysts for the synthesis of 2-oxindole 4a (R1 = CH2Ph and R2 = OEt)
Entry Catalyst (0.3 equiv.) Yield (%)
1 Polyphosphoric acid 27
2 Phosphorus oxychloride 34
3 Phosphorus pentoxide 25
4 Titanium(IV) chloride 48
5 p-Toluenesulfonic acid 40
6 Camphorsulfonic acid 62
7 Trifluoromethane sulphonic acid 78
8 Acetic acid 83
9 Trichloroacetic acid 86
10 Trifluoroacetic acid 92


Under the optimized conditions, a library of unknown 2-oxindole derivatives (4a–u, Table 3) has been generated. Even when equimolar amounts of 1, 2 and 3 were employed in the reaction, a trace amount of 5 has also been noticed in all the cases along with the major product 4. The trace compound 5a has been identified as ethyl 2-(1-benzyl-4-(benzylamino)-2-oxoindolin-3-yl)acetate (Scheme 2). The synthesis of 2-oxindole 4a can also be achieved by the reaction of 3-(benzylamino)cyclohex-2-enone (6) and diethyl acetylenedicarboxylate yielding ethyl 2-(1-benzyl-4-hydroxy-2-oxoindolin-3-yl)acetate (4a) as the single product (Scheme 3) with comparable yield. Compound 6 was prepared separately by the reaction of cyclohexane-1,3-dione with benzylamine in ethanol with catalytic amount of acetic acid.

Table 3 Three component synthesis of 2-oxindole derivatives (4a–u)
image file: c4ra02091j-u1.tif



image file: c4ra02091j-s2.tif
Scheme 2 The formation of trace compound 5a.

image file: c4ra02091j-s3.tif
Scheme 3 Two component synthesis of 2-oxindole 4a.

It must be mentioned that under a different condition with different mole ratio of the substrates, we have noticed the formation of pyrroloquinone-2,4-dione from the related starting materials.33 It is found that the aliphatic primary amines react rapidly and smoothly yielding 4 compared to aromatic primary amines. This may be due to the higher nucleophilicity of aliphatic primary amines over aromatic amines. When the model reaction was carried out with 5,5-dimethyl-1,3-cyclohexanedione in the place of cyclohexane-1,3-dione, the reaction ended with diethyl 2-(2-(benzylamino)-4,4-dimethyl-6-oxocyclohex-1-enyl)maleate (7a) (Scheme 4), though the reaction with 5-phenyl-1,3-cyclohexanedione instead of cyclohexane-1,3-dione went in the expected manner resulting in 4u (Scheme 4), indicating that aromatization may be a driving force in the formation of 4.


image file: c4ra02091j-s4.tif
Scheme 4 Three component reaction with dimedone and 5-phenyl-1,3-cyclohexanedione.

It must be admitted that the structure of the major product 4 could not be unambiguously assigned by NMR spectral data. It can be seen that both the one dimensional and two dimensional NMR spectral data could be matched with the five membered ring product (2-oxindole derivative) and also the six membered ring product, 2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylate, 8 (Fig. 2). It is to be noted that compound 8 can also be theoretically obtained as the product from this multicomponent reaction. However, the single crystal X-ray analysis (Fig. 3) came to the rescue in identifying the product 4 to be a benzfused five membered ring system and not a six membered one.


image file: c4ra02091j-f2.tif
Fig. 2 HMBC spectrum of compound 4a (two bond and three bond connections are shown in red and blue arrows respectively).

image file: c4ra02091j-f3.tif
Fig. 3 Single crystal structure of 4a.

On the basis of the above experimental results, a plausible mechanism for this one pot three-component heteroannulation is outlined in Scheme 5. In this process, trifluoroacetic acid plays a significant role in increasing the electrophilicity of the electrophile. Initially the nucleophilic attack of amine on cyclic 1,3 diketone occurs resulting in the formation of enamine. Subsequently, Michael addition with acetylene dicarboxylate and intermolecular cyclization take place one after another leading to the formation of the five membered intermediate A with the elimination of ethanol. Intermediate A then undergoes tautomerisation and aromatization to provide the target product, 3-substituted-2-oxindole 4.


image file: c4ra02091j-s5.tif
Scheme 5 Plausible mechanism for the formation of 2-oxindole (4a–u).

Conclusions

A new route to the biologically relevant 2-oxindole scaffolds via new metal free, one-pot enamine formation/Michael addition/intramolecular regiospecific cyclization/aromatization reaction sequence has been described. This one-pot multi-component procedure has many advantages with easy workup and a good atom economy avoiding transition metal catalysts, additives and cofactors.

Experimental section

General information and materials

All the reagents were obtained commercially or synthesized according to literature procedures. Nuclear Magnetic Resonance (1H and 13C NMR) spectra were recorded on a 300 MHz spectrometer in CDCl3 using TMS as internal standard. Chemical shifts are reported in parts per million (δ), coupling constants (J values) are reported in Hertz (Hz). 13C NMR spectra were routinely run with broadband decoupling. Melting points were determined on a melting point apparatus equipped with a thermometer and were uncorrected. Column chromatography was carried out in silica gel (60–120 mesh) using pet. ether–ethyl acetate as eluent. Elemental analyses were performed on a CHNS analyzer.

General procedure for the synthesis 3-substituted-2-oxindole (4)

Cyclohexane-1,3-dione (1 mmol) dissolved in minimum amount of dry toluene was added to diethyl/methyl acetylenedicarboxylate (1 mmol) followed by the addition of primary amine (1 mmol) with catalytic amount of trifluoroacetic acid (0.3 equiv.). Then the reaction mixture was refluxed and the progress of the reaction was monitored in TLC using pet. ether–ethyl acetate (3[thin space (1/6-em)]:[thin space (1/6-em)]2) mixture as eluting medium. After the completion of the reaction, the reaction mixture was quenched with water and the organic layer was separated. The crude sample got after the removal of the solvent was purified using column chromatography.

Ethyl 2-(1-benzyl-4-hydroxy-2-oxoindolin-3-yl)acetate (4a)

Colorless solid: mp 129–131 °C; 1H NMR (300 MHz, CDCl3): δ = 1.27 (t, J = 7.1 Hz, 3H), 2.73 (dd, J = 18.0, 9.9 Hz, 1H), 3.37 (dd, J = 18.0, 2.4 Hz, 1H), 3.81 (dd, J = 9.9, 2.4 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.84 (d, J = 15.6 Hz, 1H), 4.92 (d, J = 15.6 Hz, 1H), 6.32 (d, J = 8.0 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 7.05 (t, J = 8.0 Hz, 1H), 7.19–7.52 (m, 5H), 8.56 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.9, 36.0, 40.1, 44.1, 62.2, 101.3, 111.8, 112.0, 127.1, 127.5, 128.6, 129.7, 135.6, 144.5, 153.5, 175.7, 176.2; MS (M + 1) 326.33; anal. calcd for C19H19NO4: C, 70.14, H, 5.89, N, 4.31; found: C, 70.09, H, 5.85, N, 4.27%.

Methyl 2-(1-benzyl-4-hydroxy-2-oxoindolin-3-yl)acetate (4b)

Colorless solid: mp 140–142 °C; 1H NMR (300 MHz, CDCl3) δ = 2.70 (dd, J = 18.3, 10.5 Hz, 1H), 3.38 (dd, J = 18.3, 2.0 Hz, 1H), 3.77–3.84 (m, 4H), 4.85 (d, J = 16.5 Hz, 1H), 4.93 (d, J = 16.5 Hz, 1H), 6.33 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.08 (t, J = 8.1 Hz, 1H), 7.19–7.45 (m, 5H), 8.43 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 35.9, 40.1, 44.1, 53.0, 101.4, 111.9, 112.0, 127.2, 127.6, 128.7, 129.8, 135.6, 144.6, 153.5, 176.1, 176.4; MS (M + 1) 312.25. Anal. calcd for C18H17NO4: C, 69.44, H, 5.50, N, 4.50; found: C, 69.40, H, 5.47, N, 4.48%.

Ethyl 2-(4-hydroxy-1-(4-methylbenzyl)-2-oxoindolin-3-yl)acetate (4c)

Colorless solid: mp 120–122 °C; 1H NMR (300 MHz, CDCl3) δ = 1.33 (t, J = 7.2 Hz, 3H), 2.33 (s, 3H), 2.69 (dd, J = 18.2, 10.5 Hz, 1H), 3.41 (dd, J = 18.2, 1.5 Hz, 1H), 3.82 (dd, J = 10.5, 1.5 Hz, 1H), 4.31 (q, J = 7.2 Hz, 2H), 4.82 (d, J = 16.5 Hz, 1H), 4.91 (d, J = 16.5 Hz, 1H), 6.36 (d, J = 9.0 Hz, 1H), 6.59 (d, J = 9.0 Hz, 1H), 7.07–7.21 (m, 5H), 8.61 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 14.0, 21.0, 36.5, 40.1, 43.9, 62.5, 101.4, 111.9, 112.0, 127.2, 129.4, 129.8, 132.6, 137.3, 144.6, 153.6, 176.0, 176.4; MS (M + 1) 340.42. Anal. calcd for C20H21NO4: C, 70.78, H, 6.24, N, 4.13; found: C, 70.72, H, 6.19, N, 4.10%.

Methyl 2-(4-hydroxy-1-(4-methylbenzyl)-2-oxoindolin-3-yl)acetate (4d)

Colorless solid: mp 132–134 °C; 1H NMR (300 MHz, CDCl3) δ = 2.31 (s, 3H), 2.68 (dd, J = 18.3, 10.6 Hz, 1H), 3.41 (dd, J = 18.3, 2.0 Hz, 1H), 3.79–3.83 (m, 4H), 4.80 (d, J = 15.0 Hz, 1H), 4.88 (d, J = 15.0 Hz, 1H), 6.34 (d, J = 7.5 Hz, 1H), 6.57 (d, J = 7.5 Hz, 1H), 7.05–7.18 (m, 5H), 8.43 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 21.0, 35.9, 40.1, 43.9, 53.0, 101.4, 111.8, 111.9, 127.2, 129.4, 129.8, 132.6, 137.3, 144.6, 153.5, 176.1, 176.4; MS (M + 1) 326.17. Anal. calcd for C19H19NO4: C, 70.14, H, 5.89, N, 4.31; found: C, 70.11, H, 5.85, N, 4.27%.

Ethyl 2-(4-hydroxy-2-oxo-1-(4-(trifluoromethyl)benzyl) indolin-3-yl) acetate (4e)

Isolated yield 0.308 g (88%); colorless solid: mp 170–172 °C; 1H NMR (300 MHz, CDCl3) δ = 1.30 (t, J = 7.2 Hz, 3H), 2.72 (dd, J = 18.3, 10.2 Hz, 1H), 3.39 (dd, J = 18.0, 2.1 Hz, 1H), 3.84 (dd, J = 10.2, 2.1 Hz, 1H), 4.28 (q, J = 7.2 Hz, 2H), 4.89 (d, J = 15.9 Hz, 1H), 4.98 (d, J = 15.9 Hz, 1H), 6.28 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 8.4 Hz, 1H), 7.10 (t, J = 8.4 Hz, 1H), 7.45–7.55 (m, 4H), 8.54 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.9, 36.2, 40.2, 43.8, 62.4, 101.0, 112.0, 112.3, 124.6, 129.0, 129.3, 129.9, 130.4, 136.8, 144.2, 153.8, 175.9, 176.2; MS (M + 1) 394.25. Anal. calcd for C20H18F3NO4: C, 61.07, H, 4.61, N, 3.56; found: C, 61.02, H, 4.58, N, 3.51.

Ethyl 2-(4-hydroxy-1-(2-methoxybenzyl)-2-oxoindolin-3-yl)acetate (4f)

Colorless solid: mp 150–152 °C; 1H NMR (300 MHz, CDCl3) δ = 1.24 (t, J = 7.2 Hz, 3H), 2.79 (dd, J = 18.2, 10.2 Hz, 1H), 3.34 (dd, J = 18.0, 2.1 Hz, 1H), 3.81–3.86 (m, 4H), 4.20 (q, J = 7.2 Hz, 2H), 4.86 (d, J = 15.9 Hz, 1H), 4.95 (d, J = 15.9 Hz, 1H), 6.33 (d, J = 8.4 Hz, 1H), 6.55 (d, J = 8.4 Hz, 1H), 6.85 (m, 2H), 7.05 (m, 2H), 7.20 (t, J = 7.2 Hz, 1H), 8.57 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.8, 35.5, 38.8, 40.3, 55.1, 61.9, 101.4, 110.1, 111.4, 111.9, 120.4, 123.4, 127.7, 128.5, 129.5, 144.7, 153.2, 156.8, 175.0, 176.6; MS (M + 1) 356.33. Anal. calcd for C20H21NO5: C, 67.59, H, 5.96, N, 3.94; found: C, 67.55, H, 5.90, N, 3.89%.

Ethyl 2-(4-hydroxy-1-methyl-2-oxoindolin-3-yl)acetate (4g)

Colorless solid: mp 164–166 °C; 1H NMR (300 MHz, CDCl3) δ = 1.33 (t, J = 7.1 Hz, 3H), 2.62 (dd, J = 18.3, 10.7 Hz, 1H), 3.20 (s, 3H), 3.34 (d, J = 18.3 Hz, 1H), 3.72 (d, J = 10.7 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 6.42 (d, J = 9.0 Hz, 1H), 6.63 (d, J = 9.0 Hz, 1H), 7.20 (t, J = 9.0 Hz, 1H), 8.67 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.8, 26.5, 36.2, 40.6, 62.3, 100.1, 111.9, 112.0, 129.8, 145.4, 153.5, 175.7, 176.3; MS (M + 1) 250.25. Anal. calcd for C13H15NO4: C, 62.64, H, 6.07, N, 5.62; found: C, 62.59, H, 6.02, N, 5.59%.

Methyl 2-(4-hydroxy-1-methyl-2-oxoindolin-3-yl)acetate (4h)

Colorless solid: mp 157–159 °C; 1H NMR (300 MHz, DMSO) δ = 2.69 (dd, J = 18.2, 10.5 Hz, 1H), 3.24 (s, 3H), 3.37 (dd, J = 18.2, 2.0 Hz, 1H), 3.76 (broadened doublet, J = 10.5 Hz, 1H), 3.85 (s, 3H), 6.45 (d, J = 9.0 Hz, 1H), 6.66 (d, J = 9.0 Hz, 1H), 7.22 (t, J = 9.0 Hz, 1H), 8.56 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 26.7, 35.8, 40.1, 53.1, 100.4, 111.9, 112.0, 129.9, 145.5, 153.5, 175.9, 176.6; MS (M + 1) 236.22. Anal. calcd for C12H13NO4: C, 61.27, H, 5.57, N, 5.95; found: C, 61.25, H, 5.51, N, 5.91%.

Ethyl 2-(4-hydroxy-2-oxo-1-propylindolin-3-yl)acetate (4i)

Colorless solid: mp 85–87 °C; 1H NMR (300 MHz, CDCl3) δ = 0.96 (t, J = 7.2 Hz, 3H), 1.31 (t, J = 6.9 Hz, 3H), 1.66–1.76 (m, 2H), 2.63 (dd, J = 18.3, 10.5 Hz, 1H), 3.34 (dd, J = 18.3, 2.1 Hz, 1H), 3.30–3.68 (m, 3H), 4.28 (m, 2H), 6.43 (d, J = 7.8 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 8.64 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 11.3, 14.0, 20.7, 36.3, 40.1, 42.0, 62.4, 100.7, 111.7, 112.2, 129.8, 144.9, 153.7, 176.0, 176.2; MS (M + 1) 278.42. Anal. calcd for C15H19NO4: C, 64.97, H, 6.91, N, 5.05; found: C, 64.95, H, 6.87, N, 4.99%.

Methyl 2-(4-hydroxy-2-oxo-1-propylindolin-3-yl)acetate (4j)

Colorless solid: mp 101–103 °C; 1H NMR (300 MHz, CDCl3) δ = 0.95 (t, J = 7.5 Hz, 3H), 1.70 (m, 2H), 2.69 (dd, J = 18.0, 9.9 Hz, 1H), 3.32 (dd, J = 18.0, 2.4 Hz, 1H), 3.63–3.72 (m, 2H), 3.73 (dd, J = 9.9, 2.4 Hz, 1H), 3.79 (s, 3H), 6.43 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 7.5 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 8.51 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 11.2, 20.7, 35.8, 40.2, 42.1, 52.9, 100.7, 111.7, 112.2, 129.8, 145.0, 153.6, 176.1, 176.3; MS (M + 1) 264.32. Anal. calcd for C14H17NO4: C, 63.87, H, 6.51, N, 5.32; found: C, 63.84, H, 6.47, N, 5.27%.

Ethyl 2-(1-butyl-4-hydroxy-2-oxoindolin-3-yl)acetate (4k)

Colorless solid: mp 126–128 °C; 1H NMR (300 MHz, CDCl3) δ = 0.86 (t, J = 7.2 Hz, 3H), 1.25–1.33 (m, 5H), 1.63–1.70 (m, 2H), 2.70 (dd, J = 18.0, 9.6 Hz, 1H), 3.27–3.30 (m, 2H), 3.64–3.76 (m, 2H), 4.23 (q, J = 7.2 Hz, 2H), 6.42 (d, J = 9.0 Hz, 1H), 6.60 (d, J = 9.0 Hz, 1H), 7.16 (t, J = 9.0 Hz, 1H), 8.63 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 14.1, 14.2, 20.2, 29.6, 36.0, 38.6, 40.3, 62.2, 100.7, 111.6, 112.3, 129.8, 145.1, 153.8, 175.6, 176.1; anal. calcd for C16H21NO4: C, 65.96, H, 7.27, N, 4.81; found: C, 65.90, H, 7.24, N, 4.77%.

Methyl 2-(1-butyl-4-hydroxy-2-oxoindolin-3-yl)acetate (4l)

Colorless solid: mp 144–146 °C; 1H NMR (300 MHz, CDCl3) δ = 0.94 (t, J = 7.5 Hz, 3H), 1.35–1.41 (m, 2H), 1.61–1.66 (m, 2H), 2.66 (dd, J = 18.1, 10.1 Hz, 1H), 3.33 (dd, J = 18.0, 3.0 Hz, 1H), 3.64–3.73 (m, 3H), 3.79 (s, 3H), 6.42 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 7.5 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 8.49 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.5, 20.0, 29.4, 35.5, 40.2*, 52.7, 100.6, 111.5, 112.2, 129.7, 144.9, 153.6, 175.9, 176.0; anal. calcd for C15H19NO4: C, 64.97, H, 6.91, N, 5.05; found: C, 64.94, H, 6.87, N, 5.01%. (*Two carbons merged here.)

Ethyl 2-(1-hexadecyl-4-hydroxy-2-oxoindolin-3-yl)acetate (4m)

Colorless solid: mp 55–57 °C; 1H NMR (300 MHz, CDCl3) δ = 0.87 (t, J = 7.0 Hz, 3H), 1.25–1.31 (m, 31H), 2.60 (dd, J = 18.3, 10.7 Hz, 1H), 3.33 (dd, J = 18.3, 1.8 Hz, 1H), 3.66–3.72 (m, 3H), 4.28 (q, J = 7.1, Hz, 2H), 6.41 (d, J = 9.0 Hz, 1H), 6.60 (d, J = 9.0 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 8.63 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 14.0, 14.1, 22.6, 26.8, 27.4, 29.2, 29.3*, 29.4, 29.5, 29.6, 31.8, 36.3, 40.1, 40.5, 62.4, 100.6, 111.7, 112.2, 129.8, 144.9, 153.7, 175.8, 176.4; anal. calcd. for C28H45NO4: C, 73.16, H, 9.87, N, 3.05; found: C, 73.12, H, 9.85, N, 2.98%. (*More carbons merged here.)

Ethyl 2-(1-cyclopropyl-4-hydroxy-2-oxoindolin-3-yl)acetate (4n)

Colorless solid: mp 84–86 °C; 1H NMR (300 MHz, CDCl3) δ = 0.88–1.88 (m, 4H), 1.26 (t, J = 7.2 Hz, 3H), 2.62–2.74 (m, 2H), 3.27 (dd, J = 18.0, 2.4 Hz, 1H), 3.67 (dd, J = 9.6, 2.4 Hz, 1H), 4.22 (q, J = 7.2 Hz, 2H), 6.61 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 7.5 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 8.54 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 6.0, 13.9, 22.4, 35.7, 40.3, 62.1, 101.6, 111.5, 111.6, 129.6, 145.8, 153.3, 175.5, 177.0; anal. calcd for C15H17NO4: C, 65.44, H, 6.22, N, 5.09; found: C, 65.39, H, 6.19, N, 5.04%.

Ethyl 2-(1-cyclohexyl-4-hydroxy-2-oxoindolin-3-yl)acetate (4o)

Colorless solid: mp 91–93 °C; 1H NMR (300 MHz, CDCl3) δ = 1.01–1.26 (m, 8H), 1.65–1.80 (m, 6H), 2.77–2.83 (m, 1H), 3.33 (dd, J = 17.1, 2.7 Hz, 1H), 3.5 (d, J = 7.2 Hz, 2H), 3.82 (dd, J = 8.7, 3.3 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 6.49 (d, J = 8.1 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H), 7.20 (t, J = 8.1 Hz, 1H), 8.68 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.8, 25.5, 26.1, 30.7, 35.3, 36.1, 40.2, 46.6, 53.2, 61.6, 100.8, 111.2, 112.1, 129.3, 145.3, 153.4, 174.5, 176.6; anal. calcd for C18H23NO4: C, 68.12, H, 7.30, N, 4.41; found: C, 68.06, H, 7.24, N, 4.40%.

Ethyl 2-(1-(3-bromophenethyl)-4-hydroxy-2-oxoindolin-3-yl)acetate (4p)

Isolated yield 0.335 g (88%); colorless solid: mp 160–162 °C; 1H NMR (300 MHz, CDCl3) δ = 1.31 (t, J = 7.2 Hz, 3H), 2.54 (dd, J = 18.3, 10.5 Hz, 1H), 2.92 (t, J = 7.5 Hz, 2H), 3.22 (dd, J = 18.3, 1.8 Hz, 1H), 3.67 (dd, J = 10.5, 1.8 Hz, 1H), 3.80–4.00 (m, 2H), 4.22–4.33 (m, 2H), 6.41 (d, J = 7.8 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 7.09–7.35 (m, 5H), 8.68 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.8, 33.0, 36.3, 39.9, 41.3, 62.3, 100.3, 111.9, 112.0, 122.4, 127.3, 128.8, 129.8, 130.0, 131.7, 140.1, 144.3, 153.8, 175.6, 176.3; anal. calcd for C20H20BrNO4: C, 57.43, H, 4.82, N, 3.35; found: C, 57.39, H, 4.79, N, 3.32%.

Ethyl 2-(4-hydroxy-2-oxo-1-(thiophen-2-ylmethyl)indolin-3-yl)acetate (4q)

Colorless solid: mp 154–156 °C; 1H NMR (300 MHz, CDCl3) δ = 1.29 (t, J = 7.2 Hz, 3H), 2.64 (dd, J = 18.3, 10.5 Hz, 1H), 3.35 (dd, J = 18.0, 1.8 Hz, 1H), 3.76 (dd, J = 10.5, 1.8 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 5.03 (d, J = 15.9 Hz, 1H), 5.09 (d, J = 15.9 Hz, 1H), 6.49 (d, J = 7.8 Hz, 1H), 6.60 (d, J = 7.8 Hz, 1H), 6.69–6.94 (m, 1H), 7.04 (d, J = 2.7 Hz, 1H), 7.16–7.20 (m, 2H), 8.59 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.9, 36.3, 39.0, 40.0, 62.4, 101.0, 112.1*, 125.3, 126.5, 126.8, 129.9, 138.1, 144.1, 153.8, 175.6, 176.2; anal. calcd for C17H17NO4S: C, 61.61, H, 5.17, N, 4.23; found: C, 61.57, H, 5.13, N, 4.18%. (*Two carbons merged here.)

Ethyl 2-(4-hydroxy-2-oxo-1-phenylindolin-3-yl)acetate (4r)

Colorless solid: mp 165–167 °C; 1H NMR (300 MHz, CDCl3) δ = 1.37 (t, J = 7.2 Hz, 3H), 2.89 (dd, J = 18.0, 9.9 Hz, 1H), 3.41 (dd, J = 18.0, 2.4 Hz, 1H), 3.91 (dd, J = 9.9, 2.4 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 6.34 (d, J = 9.0 Hz, 1H), 6.62 (d, J = 9.0 Hz, 1H), 7.09 (t, J = 9.0 Hz, 1H), 7.38–7.44 (m, 5H), 8.54 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.9, 36.5, 40.4, 62.5, 101.7, 111.9, 112.0, 126.5, 126.7, 129.5, 129.6, 134.5, 145.6, 153.7, 175.5, 175.6; anal. calcd for C18H17NO4: C, 69.44, H, 5.50, N, 4.50; found: C, 69.39, H, 5.46, N, 4.47%.

Ethyl 2-(1-(4-fluorophenyl)-4-hydroxy-2-oxoindolin-3-yl)acetate (4s)

Colorless solid: mp 168–170 °C; 1H NMR (300 MHz, CDCl3) δ = 1.31 (t, J = 7.5 Hz, 3H), 2.82 (dd, J = 18.0, 9.6 Hz, 1H), 3.40 (dd, J = 18.0, 1.2 Hz, 1H), 3.90 (dd, J = 9.6, 1.2 Hz, 1H), 4.28 (q, J = 7.5 Hz, 2H), 6.28 (d, J = 8.4 Hz, 1H), 6.63 (d, J = 8.4 Hz, 1H), 7.10 (t, J = 8.4 Hz, 1H), 7.17–7.26 (m, 2H), 7.35–7.39 (m, 2H), 8.47 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 14.2, 36.3, 40.4, 62.4, 101.5, 112.1, 112.3, 116.6, 116.7, 128.6, 129.8, 145.5, 152.6, 153.8, 175.7, 175.8; anal. calcd for C18H16FNO4: C, 65.65, H, 4.90, N, 4.25; found: C, 65.59, H, 4.86, N, 4.22%.

Ethyl 2-(1-(3,5-dichlorophenyl)-4-hydroxy-2-oxoindolin-3-yl)acetate (4t)

Colorless solid: mp 175–177 °C; 1H NMR (300 MHz, CDCl3) δ = 1.23 (t, J = 7.5 Hz, 3H), 2.65 (dd, J = 18.0, 9.6 Hz, 1H), 3.32 (dd, J = 18.0, 2.4 Hz, 1H), 3.82 (dd, J = 9.6, 2.4 Hz, 1H), 4.20 (q, J = 7.5 Hz, 2H), 6.30 (d, J = 8.1 Hz, 1H), 6.57 (d, J = 8.1 Hz, 1H), 7.06 (t, J = 8.1 Hz, 1H), 7.28 (d, J = 1.8 Hz, 2H), 7.33 (d, J = 1.8 Hz, 1H), 8.33 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 14.0, 36.1, 40.4, 62.4, 101.5, 112.0, 112.6, 125.3, 128.4, 129.9, 135.8, 136.4, 144.4, 153.9, 175.3, 175.4; anal. calcd for C18H15Cl2NO4: C, 56.86, H, 3.98, N, 3.68; found: C, 56.82, H, 3.93, N, 3.64%.

Ethyl 2-(1-benzyl-4-hydroxy-2-oxo-6-phenylindolin-3-yl)acetate (4u)

Colorless solid: mp 154–156 °C; 1H NMR (300 MHz, CDCl3) δ = 1.31 (t, J = 7.2 Hz, 3H), 2.71 (dd, J = 18.3, 10.5 Hz, 1H), 3.42 (dd, J = 18.3, 2.1 Hz, 1H), 3.85 (dd, J = 10.5, 2.1 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 4.88 (d, J = 15.6 Hz, 1H), 4.94 (d, J = 15.6 Hz, 1H), 6.55 (s, 1H), 6.82 (s, 1H), 7.25–7.43 (m, 10H), 8.75 (s, 1H); 13C NMR (75 MHz, CDCl3) δ = 13.9, 36.5, 40.1, 44.2, 62.4, 100.4, 110.8, 111.0, 126.9, 127.2, 127.6, 127.7, 128.6, 128.7, 138.7, 140.6, 143.6, 145.1, 153.7, 176.2, 176.6; anal. calcd for C25H23NO4: C, 74.79, H, 5.77, N, 3.49; found: C, 74.73, H, 5.74, N, 3.45%.

Acknowledgements

The authors thank DST, New Delhi for assistance under the IRHPA program for the NMR facility. Financial support from UGC, New Delhi to Mr M. Boominathan was gratefully acknowledged.

Notes and references

  1. (a) Z. K. Xiao, H. Y. Yin and L. X. Shao, Org. Lett., 2013, 15, 1254 CrossRef CAS PubMed; (b) W. T. Wei, M. B. Zhou, J. H. Fan, W. Liu, R. J. Song, Y. Liu, M. Hu, P. Xie and J. H. Li, Angew. Chem., Int. Ed, 2013, 52, 3638 CrossRef CAS PubMed , and reference there in; (c) J. J. Badillo, N. V. Hanhan and A. K. Franz, Curr. Opin. Drug Discovery Dev., 2010, 13, 758 CAS; (d) K. A. Scheidt and C. V. Galliford, Angew. Chem., Int. Ed., 2007, 46, 8748 CrossRef PubMed.
  2. (a) D. Basavaiah and K. R. Reddy, Org. Lett., 2007, 9, 57 CrossRef CAS PubMed , and reference there in; (b) A. Jossang, P. Jossang, H. A. Hadi, T. Sevenet and B. Bodo, J. Org. Chem., 1991, 56, 6527 CrossRef CAS; (c) S.-I. Bascop, J. Sapi, J.-Y. Laronze and J. Levy, Heterocycles, 1994, 38, 725 CrossRef CAS; (d) S. Peddibhotla, Curr. Bioact. Compd., 2009, 5, 20 CrossRef CAS; (e) W. Balk-Bindseil, E. Helmke, H. Weyland and H. Laatsch, Liebigs Ann., 1995, 1291 CrossRef CAS; (f) Y. Tang, I. Sattler, R. Thiericke and S. Grabley, Eur. J. Org. Chem., 2001, 261 CrossRef CAS; (g) Y. Kamano, H.-P. Zhang, Y. Ichihara, H. Kizu, K. Komiyama and G. R. Pettit, Tetrahedron Lett., 1995, 36, 2783 CrossRef CAS; (h) H.-P. Zhang, Y. Kamano, Y. Ichihara, H. Kizu, K. Komiyama, H. Itokawa and G. R. Pettit, Tetrahedron, 1995, 51, 5523 CrossRef CAS; (i) R. Niu, J. Xiao, T. Liang and X. Li, Org. Lett., 2012, 14, 676 CrossRef CAS PubMed , and reference there in.
  3. (a) H. Kitamura, A. Kato and T. Esaki, Eur. J. Pharmacol., 2001, 418, 225 CrossRef CAS; (b) M. Ochi, K. Kawasaki, H. Kataoka and Y. Uchio, Biochem. Biophys. Res. Commun., 2001, 283, 1118 CrossRef CAS PubMed.
  4. (a) K. Bernard, S. Bogliolo and J. Ehrenfeld, Br. J. Pharmacol., 2005, 144, 1037 CrossRef CAS PubMed; (b) G. Gilles and S. L. Claudine, Stress, 2003, 6, 199 CrossRef PubMed; (c) T. Oost, G. Backfisch, S. Bhowmik, M. M. van Gaalen, H. Geneste, W. Hornberger, W. Lubisch, A. Netz, L. Unger and W. Wernet, Bioorg. Med. Chem. Lett., 2011, 21, 3828 CrossRef CAS PubMed; (d) G. Griebel, J. Simiand, C. Serradeil-LeGal, J. Wagnon, M. Pascal, B. Scatton, J.-P. Maffrand and P. Soubrie, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 6370 CrossRef CAS PubMed.
  5. (a) M. Vieth and D. Cummins, J. Med. Chem., 2000, 43, 3020 CrossRef CAS PubMed; (b) H. N. Bramson, J. Corona, S. T. Davis, S. H. Dickerson, M. Edelstein, S. V. Frye, R. T. Gampe, P. A. Harris, A. Hassell, W. D. Holmes, R. N. Hunter, K. E. Lackey, B. Lovejoy, M. J. Luzzio, V. Montana, W. J. Rocque, D. Rusnak, L. Schewchuk, J. M. Veal, D. H. Walker and L. F. Kuyper, J. Med. Chem., 2001, 44, 4339 CrossRef CAS PubMed; (c) L. Liang, C. Sun, S. Shirazian, Y. Zhou, T. Miller, J. Cui, J. Y. Fukuda, J.-Y. Chu, A. Nematalla, X. Wang, H. Chen, A. Sistla, T. C. Luu, F. Tang, J. Wei and C. Tang, J. Med. Chem., 2003, 46, 1116 CrossRef PubMed.
  6. D. J. Eberwein, L. Harrington, R. Griffin, S. Tadepalli, V. Knick, K. Phillips, S. Dickerson and S. Davies, Proc. Am. Assoc., Cancer. Res., 2002, 43, 1611 Search PubMed.
  7. P. E. Shaheen, B. I. Rini and R. M. Bukowski, Clin. Genitourin. Cancer, 2006, 5, 78 CrossRef PubMed.
  8. A. Fensome, W. R. Adams, A. L. Adams, T. J. Berrodin, J. Cohen, C. Huselton, A. Illenberger, J. C. Kern, V. A. Hudak, M. A. Marella, E. G. Melenski, C. C. McComas, C. A. Mugford, O. D. Slayden, M. Yudt, Z. Zhang, P. Zhang, Y. Zhu, R. C. Winneker and J. E. Wrobel, J. Med. Chem., 2008, 51, 1861 CrossRef CAS PubMed.
  9. (a) D. Drygin, M. Haddach, F. Pierre and M. R. David, J. Med. Chem., 2012, 55, 8199 CrossRef CAS PubMed; (b) J. Xiao, W. Westbroek, O. Motabar, W. A. Lea, X. Hu, A. Velayati, W. Zheng, N. Southall, A. M. Gustafson, E. Goldin, E. Sidransky, K. Liu, A. Simeonov, R. J. Tamargo, A. Ribes, L. Matalonga, M. Ferrer and J. J. Marugan, J. Med. Chem., 2012, 55, 7546 CrossRef CAS PubMed.
  10. (a) P. F. Moore, D. L. Larson, I. G. Otterness, A. Weissman, S. B. Kadin, F. J. Sweeney, J. D. Eskra, A. Nagahisa, M. Sakakibara and T. J. Carty, Inflammation Res., 1996, 45, 54 CrossRef CAS; (b) A. R. Kraska, F. E. Wilhelm, D. S. Kirby, L. D. Loose, N. Ting, W. R. Shanahan and E. S. Weiner, Arthritis Rheum., 1995, 38, 1447 CrossRef; (c) J. M. Pelletier, I. G. Otterness, A. L. Anaya, F. Mineau, G. Tardif and J. P. Pelletier, Arthritis Rheum., 1995, 38, 1290 CrossRef.
  11. (a) M. Mohammadi, G. McMahon, L. Sun, C. Tang, P. Hirth, B. K. Yeh, S. R. Hubbard and J. Schlessinger, Science., 1997, 276, 955 CrossRef CAS; (b) L. Sun, N. Tran, C. Liang, F. Tang, A. Rice, R. Schreck, K. Waltz, L. K. Shawver, G. McMahon and C. Tang, J. Med. Chem., 1999, 42, 5120 CrossRef CAS PubMed; (c) B. J. Hare, W. P. Walters, P. R. Caron and G. W. Bemis, J. Med. Chem., 2004, 47, 4731 CrossRef CAS PubMed; (d) M. E. M. Noble, J. A. Endicott and L. N. Johnson, Science, 2004, 203, 1800 CrossRef PubMed; (e) J. J.-L. Liao, J. Med. Chem., 2007, 50, 409 CrossRef CAS PubMed.
  12. (a) T. P. Cho, S. Y. Dong, F. Jun, F. J. Hong, Y. J. Liang, X. Lu, P. J. Hua, L. Y. Li, Z. Lei, H. Bing, Z. Ying, L. F. Qiong, F. B. Bei, L. L. Guang, G. A. Shen, S. G. Hong, S. W. Hong and M. X. Tai, J. Med. Chem., 2010, 53, 8140 CrossRef PubMed; (b) L. Sun, N. Tran, F. Tang, H. App, P. Hirth, G. McMahon and C. Tang, J. Med. Chem., 1998, 41, 2588 CrossRef CAS PubMed.
  13. C.-C. Chiang, Y.-H. Lin, S. F. Lin, C.-L. Lai, C. Liu, W.-Y. Wei, S.-C. Yang, R.-W. Wang, L.-W. Teng, S.-H. Chuang, J.-M. Chang, T.-T. Yuan, Y.-S. Lee, P. Chen, W.-K. Chi, J.-Y. Yang, H.-J. Huang, C.-B. Liao and J.-J. Huang, J. Med. Chem., 2010, 53, 5929 CrossRef CAS PubMed.
  14. (a) J. Folkman, J. Med. Chem., 1971, 285, 1182 CAS; (b) G. J. Roth, A. Heckel, F. Colbatzky, S. Handschuh, J. Kley, T. Lehmann-Lintz, R. Lotz, U. Tontsch-Grunt, R. Walter and F. Hilberg, J. Med. Chem., 2009, 52, 4466 CrossRef CAS PubMed , and reference there in.
  15. P. Singh, M. Kaur and S. Sachdeva, J. Med. Chem., 2012, 55, 6381 CrossRef CAS PubMed.
  16. J. C. Henise and J. Taunton, J. Med. Chem., 2011, 54, 4133 CrossRef CAS PubMed.
  17. (a) R. P. Robinson, L. A. Reiter, W. E. Barth, A. M. Campeta, K. Cooper, B. J. Cronin, R. Destito, K. M. Donahue, F. C. Falkner, E. F. Fiese, D. L. Johnson, A. V. Kuperman, T. E. Liston, D. Malloy, J. J. Martin, D. Y. Mitchell, F. W. Rusek, S. L. Shamblin and C. F. Wright, J. Med. Chem., 1996, 39, 10 CrossRef CAS PubMed; (b) H. N. Bramson, J. Corona, S. T. Davis, S. H. Dickerson, M. Edelstein, S. V. Frye, R. T. Gampe, P. A. Harris, A. Hassell, W. D. Holmes, R. N. Hunter, K. E. Lackey, B. Lovejoy, M. J. Luzzio, V. Montana, W. J. Rocque, D. Rusnak, L. Shewchuk, J. M. Veal, D. H. Walker and L. F. Kuyper, J. Med. Chem., 2001, 44, 4339 CrossRef CAS PubMed; (c) P. P. Graczyk, J. Med. Chem., 2007, 50, 5773 CrossRef CAS PubMed.
  18. (a) R. Yanada, S. Obika, Y. Kobayashi, T. Inokuma, M. Oyama, K. Yanada and Y. Takemoto, Adv. Synth. Catal., 2005, 347, 1632 CrossRef CAS; (b) A. Pinto, L. Neuville and J. Zhu, Tetrahedron Lett., 2009, 50, 3602 CrossRef CAS PubMed; (c) T. Miura, T. Toyoshima, Y. Takahashi and M. Murakami, Org. Lett., 2009, 11, 2141 CrossRef CAS PubMed , and references there in; (d) W. Erb, L. Neuville and J. Zhu, J. Org. Chem., 2009, 74, 3109 CrossRef CAS PubMed.
  19. W.-M. Dai, J. Shi and J. Wu, Synlett, 2008, 2716 CrossRef CAS PubMed.
  20. M. R. Fielding, R. Grigg and C. H. Urch, Chem. Commun., 2000, 2239 RSC.
  21. W. R. Bowman, H. Heaney and B. M. Jordan, Tetrahedron Lett., 1998, 29, 6657 CrossRef.
  22. (a) S. Kamijo, Y. Sasaki, C. Kanazawa, T. Schusseler and Y. Yamamoto, Angew. Chem., Int. Ed., 2005, 44, 7718 CrossRef CAS PubMed; (b) S. T. Miura, Y. Takahashi and M. Murakami, Org. Lett., 2008, 10, 1743 CrossRef PubMed; (c) T. Miura, Y. Takahashi and M. Murakami, Org. Lett., 2007, 9, 5075 CrossRef CAS PubMed.
  23. (a) K. Hirao, N. Morii, T. Joh and S. Takahashi, Tetrahedron Lett., 1995, 36, 6243 CrossRef CAS; (b) J. H. Park, E. Kim and Y. K. Cheng, Org. Lett., 2008, 10, 4719 CrossRef CAS PubMed.
  24. (a) D. M. D'Souza, F. Rominger and T. J. Muller, Angew. Chem., Int. Ed., 2005, 44, 153 CrossRef CAS PubMed; (b) R. Yanada, S. Obika, T. Inokuma, K. Yanada, M. Yamashita, S. Ohta and Y. Takemoto, J. Org. Chem., 2005, 70, 6972 CrossRef CAS PubMed; (c) R. Yanada, S. Obika, M. Oyama and Y. Takemoto, Org. Lett., 2004, 6, 2828 CrossRef PubMed; (d) R. Shintani, T. Yamagami and T. Hayashi, Org. Lett., 2006, 8, 4799 CrossRef CAS PubMed.
  25. (a) A. Pinto, L. Neuville, P. Retaillean and J. Zhu, Org. Lett., 2006, 8, 4927 CrossRef CAS PubMed; (b) A. Pinto, L. Neuville and J. Zhu, Angew. Chem., Int. Ed., 2007, 46, 3291 CrossRef CAS PubMed; (c) S. Tang, P. Peng, P. Zhong and J.-H. Li, J. Org. Chem., 2008, 73, 5476 CrossRef CAS PubMed.
  26. (a) T.-M. Yang and G. Liu, J. Comb. Chem., 2007, 9, 86 CrossRef CAS PubMed; (b) A. Teichert, K. Jantos, K. Jarms and A. Studer, Org. Lett., 2004, 6, 3477 CrossRef CAS PubMed; (c) A. Andreani, S. Burnelli, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, L. Varoli and M. W. Kunkel, J. Med. Chem., 2006, 49, 6922 CrossRef CAS PubMed.
  27. (a) M. Arthuis, R. Pontikis and J.-C. Florent, Tetrahedron Lett., 2007, 48, 6397 CrossRef CAS PubMed; (b) S. Tang, P. Peng, Z.-Q. Wang, B.-X. Tang, C.-L. Deng, J.-H. Li, P. Zhong and N.-X. Wang, Org. Lett., 2008, 10, 1875 CrossRef CAS PubMed; (c) Q.-F. Yu, V. Zhang, Q. Yin, B.-X. Tang, R.-Y. Tang, P. Zhong and J.-H. Li, J. Org. Chem., 2008, 73, 3658 CrossRef CAS PubMed.
  28. (a) L. F. Tietze, G. Brasche and K. M. Gericke, Domino Reaction in Organic Synthesis, John Wiely-VCH, Weinheim, 2006, p. 542 Search PubMed; (b) L. F. Tietze, F. Hauner, M. L. Shibasaki and J. F. Stoddart, in Stimulating Concepts in Chemistry, John Wiely-VCH, 2000, p. 39 Search PubMed.
  29. (a) J. P. Zhu and H. Bienaymé, Multicomponent Reactions, Wiley-VCH, Weinheim, Germany, 2005 Search PubMed; (b) A. Dömling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39, 3168 CrossRef; (c) A. Dömling, Chem. Rev., 2006, 106, 17 CrossRef PubMed; (d) E. Ruijter, R. Scheffelaar and R. V. A. Orru, Angew. Chem., Int. Ed., 2011, 50, 6234 CrossRef CAS PubMed; (e) M. Gonzá lez-Ló pez and J. T. Shaw, Chem. Rev., 2009, 109, 164 CrossRef PubMed; (f) J. Yu, F. Shi and L.-Z. Gong, Acc. Chem. Res., 2011, 44, 1156 CrossRef CAS PubMed; (g) L. F. Tietze, T. C. Kinzel and C. Brazel, Acc. Chem. Res., 2009, 42, 367 CrossRef CAS PubMed; (h) B. Jiang, T. Rajale, W. Wever, S.-J. Tu and G.-G. Li, Chem. – Asian J., 2010, 5, 2318 CrossRef CAS PubMed; (i) B. Jiang, S.-J. Tu, P. Kaur, W. Wever and G.-G. Li, J. Am. Chem. Soc., 2009, 131, 11660 CrossRef CAS PubMed.
  30. (a) D. Hong, Y.-X. Zhu, Y. Li, X.-F. Lin, P. Lu and Y.-G. Wang, Org. Lett., 2011, 13, 4668 CrossRef CAS PubMed; (b) W. Fan, Q. Ye, H.-W. Xu, B. Jiang, S.-L. Wang and S.-J. Tu, Org. Lett., 2013, 15, 2258 CrossRef CAS PubMed; (c) X.-F. Lin, Z.-J. Mao, X.-X. Dai, P. Lu and Y.-G. Wang, Chem. Commun., 2011, 47, 6620 RSC; (d) S. Chowdhury, G. Nandi, S. Samai and M. S. Singh, Org. Lett., 2011, 13, 3762 CrossRef CAS PubMed; (e) M. S. Singh, G. C. Nandi and S. Samai, Green Chem., 2012, 14, 447 RSC; (f) F.-C. Yu, S.-J. Yan, L. Hu, Y.-C. Wang and J. Lin, Org. Lett., 2011, 13, 4782 CrossRef CAS PubMed; (g) F.-C. Yu, R. Huang, H. C. Ni, J. Fan, S. J. Yan and J. Lin, Green Chem., 2013, 15, 453 RSC; (h) X. Feng, Q. Wang, W. Lin, G.-L. Dou, Z.-B. Huang and D.-Q. Shi, Org. Lett., 2013, 15, 2542 CrossRef CAS PubMed.
  31. M. Bararjanian, S. Balalaie, F. Rominger, B. Movassagh and H. R. Bijanzadeh, J. Org. Chem., 2010, 75, 2806 CrossRef CAS PubMed.
  32. S. Periyaraja, A. B. Mandal and P. Shanmugam, Org. Lett., 2011, 13, 4980 CrossRef CAS PubMed.
  33. M. Boominathan, M. Nagaraj, S. Muthusubramanian and R. V. Krishnakumar, Tetrahedron, 2011, 67, 6057 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: 1H and 13C NMR spectral data, NMR spectra, mass spectra and crystal data. CCDC 976050. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ra02091j

This journal is © The Royal Society of Chemistry 2014