Issue 27, 2015

Vanadyl calix[6]arene complexes: synthesis, structural studies and ethylene homo-(co-)polymerization capability

Abstract

Treatment of p-tert-butylcalix[6]areneH6 (L6H6) with in situ [LiVO(Ot-Bu)4] afforded, after work-up, the dark green complex [Li(MeCN)4][V2(O)2Li(MeCN)(L6H2)2]·8MeCN (1·8MeCN). On one occasion, the reaction led to the formation of a mixture of products, the bulk of which differing from 1 only in the amount of solvate, viz.2·9.67MeCN. The second minor, yellow product has the formula {[(VO2)2(L6H2)(Li(MeCN)2)2]·2MeCN}n (3·2MeCN), and comprises a 1D polymeric structure with links through the L6H2 ligand and Li2O2 units. When the reverse order of addition was employed such that lithium tert-butoxide (7.5 equivalents) was added to L6H6, and subsequently treated with VOCl3 (2 equiv.), the complex {[VO(THF)][VO(μ-O)]2Li(THF)(Et2O)][L6]}·2Et2O·0.5THF (4·2Et2O·0.5THF), which contains a trinuclear motif possessing a central, octahedral vanadyl centre linked via oxo bridges to two tetrahedral (C3v) vanadyl centres, was isolated. The calix[6]arene in 4 is severely twisted and adopts a ‘down, down, down, down, out, out’ conformation. Use of excess lithium tert-butoxide led to a complex very similar to 4, differing only in the solvent of crystallization, namely 5·Et2O·2THF. The ability of 1 and 5 to act as pre-catalysts for ethylene polymerization in the presence of a variety of co-catalysts and under various conditions has been investigated. Co-polymerization of ethylene with propylene and with 1-hexene have also been conducted; results are compared versus VO(OEt)Cl2.

Graphical abstract: Vanadyl calix[6]arene complexes: synthesis, structural studies and ethylene homo-(co-)polymerization capability

Supplementary files

Article information

Article type
Paper
Submitted
27 Jan 2015
Accepted
02 Mar 2015
First published
03 Mar 2015

Dalton Trans., 2015,44, 12292-12303

Author version available

Vanadyl calix[6]arene complexes: synthesis, structural studies and ethylene homo-(co-)polymerization capability

C. Redshaw, M. Walton, K. Michiue, Y. Chao, A. Walton, P. Elo, V. Sumerin, C. Jiang and M. R. J. Elsegood, Dalton Trans., 2015, 44, 12292 DOI: 10.1039/C5DT00376H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements