Shota
Yoshioka
a,
Yasuhide
Inokuma
a,
Manabu
Hoshino
a,
Takashi
Sato
b and
Makoto
Fujita
*a
aDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: mfujita@appchem.t.u-tokyo.ac.jp
bLife Science Square, Lab Solutions, Agilent Technologies Japan, Ltd., Osaka University, TechnoAlliance Complex 3F, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
First published on 12th May 2015
The absolute stereochemistry of compounds with axial and planar chirality is successfully determined by the crystalline sponge method without crystallization or derivatization of the compounds. This method is applied to absolute structure determination in the asymmetric synthesis of unique compounds with axial and planar chirality.
The crystalline sponge method is a recently developed technique for single crystal diffraction (SCD) studies that does not require crystallization of the samples.3 By soaking guests into porous coordination networks (crystalline sponges), the guests are oriented for SCD study.4 For the practical use of this method, a detailed protocol5 and experimental guidelines6 have been reported. When the sponge method is combined with the Bijvoet method, neither heavy-atom incorporation nor crystallization is necessary for absolute structure determination because heavy atoms (zinc and iodine atoms) are already installed in the sponge framework. In our original report, this great advantage was examined for only one chiral molecule (santonin), which had known configurations at stereogenic carbons. Here the method is applied to the absolute structure analysis of compounds with axial and planar chirality. In addition to standard o-substituted biaryl 2 (Fig. 1),‡§7 two chiral molecules obtained in recent asymmetric synthesis studies are analyzed: Yamaguchi and Itami's axially chiral compound 3 (ref. 8) and Mori and Ogasawara's planar chiral compound 4 (Scheme 1).9 The successful absolute structure determination, particularly for configurationally unknown 4, is a fine demonstration that the crystalline sponge method will be of great help for asymmetric synthesis studies when the absolute structures of chiral products are hard to determine.
Scheme 1 Reported asymmetric synthesis of (S)-3 and (Sp)-4. (a) Asymmetric cross-coupling via C–H activation developed by Yamaguchi and Itami.8 (b) Asymmetric olefin metathesis developed by Mori and Ogasawara.9 |
The crystalline sponge method was next applied to biaryl compound 3, which was recently prepared by an enantioselective aryl–aryl coupling reaction via direct aryl C–H activation (Scheme 1a).8 As there are no reliable standard samples for the thiophene–naphthalene biaryl ring systems, it was not easy to determine the absolute configuration of biaryl 3. As the sponge method can be performed on a microgram scale, racemic 3 was subjected to chiral HPLC separation to obtain enantiomerically pure samples of (R)- and (S)-3 in microgram quantities (LC-SCD method). The first fraction (∼5 μg), corresponding to the major enantiomer in the reaction shown in Scheme 1a, was treated with crystalline sponge 1 for 2 days at 50 °C, and the guest-included sponge crystal was subjected to a diffraction study. The crystallographic analysis revealed the absolute structure of (S)-3 with a Flack parameter of 0.102(7) in the monoclinic C2 space group. Although the crystal structure contains three crystallographically independent guest molecules, all of them are shown to be in the S configuration. The crystalline sponge analysis of the second fraction showed the mirror image of the guest-soaked complex; it was in the R configuration with a Flack parameter of 0.046(6), in line with the X-ray crystallographic analysis of a derivative of (R)-3 (Fig. 2).¶||8
Fig. 2 Crystal structure of (a) (S)-3 and (b) (R)-3 determined by the crystalline sponge method (ORTEP at 50% probability). |
Macrocyclic bisbenzimidazole 4 shows planar chirality because it contains a chiral cyclic E-alkene linkage that hardly flips into its enantiomeric structure at room temperature.9a The enantioselective synthesis of 4 using a chiral metathesis catalyst has quite recently been developed by Mori and Ogasawara.9b Chemical introduction of a heavy atom or a chiral reference group into 4 for absolute structure determination is difficult and, thus, its absolute configuration remained unknown. Again, the crystalline sponge analysis was performed after chiral HPLC separation9a of racemic 4. The first fraction, which corresponded to the major enantiomer in the reaction of Scheme 1b, was separated and subjected to the crystalline sponge method. The crystallographic analysis of the guest-absorbed sponge clearly revealed the Sp configuration for the major enantiomer of 4 trapped in the pore [Flack parameter: 0.070(5)]. The crystal structure also revealed that the planar chirality of the cyclic E-alkene was effectively transferred to the S axial chirality of the bisimidazole framework and the P helical chirality of the cyclic E-alkene framework. Diastereomeric isomers of this compound do not exist because of steric restriction. In a similar fashion, the second (minor) HPLC fraction was determined to be (Rp)-4 [Flack parameter: 0.044(5)] (Fig. 3).**††
Fig. 3 Crystal structures of (Sp)-4 (first fraction) and (Rp)-4 (second fraction) superimposed with the electron density map (Fo, counter: 0.6σ). |
Footnotes |
† Electronic supplementary information (ESI) available: Details of sample preparation and crystallographic analysis. CCDC 1051799, 1051800, 1051618, 1051619, 1043948 and 1043949. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01681a |
‡ Crystallographic data for 1·(S)-2: C72H48N24Zn6I12·0.94(C16H16O2), M = 3390.77, pale yellow, block, 0.12 × 0.06 × 0.04 mm3, monoclinic, space group C2, a = 34.627(4) Å, b = 15.0818(16) Å, c = 31.194(3) Å, β = 102.7920(10)°, V = 15886(3) Å3, Z = 4, Dc = 1.418 g cm−3, T = 90(2) K, 1.206 < θ < 24.760°, Rint = 0.0408, 1441 parameters, 263 restraints, GoF = 1.045, final R factors R1 = 0.0745, and wR2 = 0.2548 for all data, Flack parameter = 0.082(11). CCDC deposit number 1051800. |
§ Crystallographic data for 1·(R)-2: C72H48N24Zn6I12·0.85(C16H16O2), M = 3370.32, pale yellow, block, 0.12 × 0.08 × 0.08 mm3, monoclinic, space group C2, a = 34.200(3) Å, b = 15.1265(13) Å, c = 31.003(3) Å, β = 102.3850(10)°, V = 15665(2) Å3, Z = 4, Dc = 1.429 g cm−3, T = 90(2) K, 1.219 < θ < 26.437°, Rint = 0.0315, 1307 parameters, 205 restraints, GoF = 1.049, final R factors R1 = 0.0978, and wR2 = 0.3129 for all data, Flack parameter = 0.169(8). CCDC deposit number 1051799. |
¶ Crystallographic data for 1·(S)-3: C72H48N24Zn6I12·0.62(C19H20S)·0.63(C6H12), M = 3392.41, yellow, block, 0.11 × 0.07 × 0.05 mm3, monoclinic, space group C2, a = 34.4391(11) Å, b = 15.0959(3) Å, c = 29.9566(10) Å, β = 101.454(3)°, V = 15263.4(8) Å3, Z = 4, Dc = 1.476 g cm−3, T = 100(2) K, 3.431 < θ < 74.380°, Rint = 0.0301, 1542 parameters, 438 restraints, GoF = 1.033, final R factors R1 = 0.0749, and wR2 = 0.2612 for all data, Flack parameter = 0.102(7). CCDC deposit number 1051619. |
|| Crystallographic data for 1·(R)-3: C72H48N24Zn6I12·0.5(C19H20S)·0.5(C6H12), M = 3351.45, yellow, block, 0.13 × 0.11 × 0.09 mm3, monoclinic, space group C2, a = 34.8299(7) Å, b = 14.9133(2) Å, c = 31.5387(6) Å, β = 102.403(2)°, V = 15999.8(5) Å3, Z = 4, Dc = 1.391 g cm−3, T = 100(2) K, 3.236 < θ < 74.481°, Rint = 0.0259, 1521 parameters, 434 restraints, GoF = 1.083, final R factors R1 = 0.0598, and wR2 = 0.2036 for all data, Flack parameter = 0.046(6). CCDC deposit number 1051618. |
** Crystallographic data for 1·(Sp)-4: C36H24N12Zn3I6·0.5(C20H14N4)·2.4(C6H12), M = 1939.42, colorless, block, 0.27 × 0.1 × 0.08 mm3, monoclinic, space group C2, a = 35.2721(9) Å, b = 14.6427(2) Å, c = 31.6037(9) Å, β = 102.029(2)°, V = 15964.2(7) Å3, Z = 8, Dc = 1.614 g cm−3, T = 100(2) K, 2.562 < θ < 77.630°, Rint = 0.0675, 2127 parameters, 1188 restraints, GoF = 1.015, final R factors R1 = 0.0651, and wR2 = 0.2139 for all data, Flack parameter = 0.070(5). CCDC deposit number 1043949. |
†† Crystallographic data for 1·(Rp)-4: C36H24N12Zn3I6·0.27(C20H14N4)·4.4(C6H12), M = 1972.67, colorless, block, 0.22 × 0.07 × 0.07 mm3, monoclinic, space group C2, a = 35.1081(9) Å, b = 14.6516(2) Å, c = 31.3279(8) Å, β = 101.649(2)°, V = 15782.8(6) Å3, Z = 8, Dc = 1.660 g cm−3, T = 100(2) K, 2.570 < θ < 77.721°, Rint = 0.0674, 2285 parameters, 1450 restraints, GoF = 1.021, final R factors R1 = 0.0580, and wR2 = 0.1852 for all data, Flack parameter = 0.044(5). CCDC deposit number 1043948. |
This journal is © The Royal Society of Chemistry 2015 |