Issue 23, 2016

Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry

Abstract

Advances in liquid chromatography-mass spectrometry (LC-MS) instruments and analytical strategies have brought about great progress in targeted metabolomics analysis. This methodology is now capable of performing precise targeted measurement of dozens or hundreds of metabolites in complex biological samples. Classic targeted quantification assay using the multiple reaction monitoring (MRM) mode has been the foundation of high-quality metabolite quantitation. However, utilization of this strategy in biological studies has been limited by its relatively low metabolite coverage and throughput capacity. A number of methods for large-scale targeted metabolomics assay which have been developed overcome these limitations. These strategies have enabled extended metabolite coverage which is defined as targeting of large numbers of metabolites, while maintaining reliable quantification performance. These recently developed techniques thus bridge the gap between traditional targeted metabolite quantification and untargeted metabolomics profiling, and have proven to be powerful tools for metabolomics study. Although the LC-MRM-MS strategy has been used widely in large-scale metabolomics quantification analysis due to its fast scan speed and ideal analytic stability, there are still drawbacks which are due to the low resolution of the triple quadrupole instruments used for MRM assays. New approaches have been developed to expand the options for large-scale targeted metabolomics study, using high-resolution instruments such as parallel reaction monitoring (PRM). MRM and PRM-based techniques are now attractive strategies for quantitative metabolomics analysis and high-throughput biomarker discovery. Here we provide an overview of the major developments in LC-MS-based strategies for large-scale targeted metabolomics quantification in biological samples. The advantages of LC-MRM/PRM-MS based analytical strategies which may be used in multiplexed and high throughput quantitation for a wide range of metabolites are highlighted. In particular, PRM and MRM strategies are compared, and we summarize the work flow commonly used for large-scale targeted metabolomics analysis including sample preparation, LC separation and data analysis, as well as recent applications in biological studies.

Graphical abstract: Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry

Article information

Article type
Critical Review
Submitted
03 Aug 2016
Accepted
23 Sep 2016
First published
26 Sep 2016

Analyst, 2016,141, 6362-6373

Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry

J. Zhou and Y. Yin, Analyst, 2016, 141, 6362 DOI: 10.1039/C6AN01753C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements