Issue 12, 2016

Hydrogen-atom attack on phenol and toluene is ortho-directed

Abstract

The reaction of H + phenol and H/D + toluene has been studied in a supersonic expansion after electric discharge. The (1 + 1′) resonance-enhanced multiphoton ionization (REMPI) spectra of the reaction products, at m/z = parent + 1, or parent + 2 amu, were measured by scanning the first (resonance) laser. The resulting spectra are highly structured. Ionization energies were measured by scanning the second (ionization) laser, while the first laser was tuned to a specific transition. Theoretical calculations, benchmarked to the well-studied H + benzene → cyclohexadienyl radical reaction, were performed. The spectrum arising from the reaction of H + phenol is attributed solely to the ortho-hydroxy-cyclohexadienyl radical, which was found in two conformers (syn and anti). Similarly, the reaction of H/D + toluene formed solely the ortho isomer. The preference for the ortho isomer at 100–200 K in the molecular beam is attributed to kinetic, not thermodynamic effects, caused by an entrance channel barrier that is ∼5 kJ mol−1 lower for ortho than for other isomers. Based on these results, we predict that the reaction of H + phenol and H + toluene should still favour the ortho isomer under elevated temperature conditions in the early stages of combustion (200–400 °C).

Graphical abstract: Hydrogen-atom attack on phenol and toluene is ortho-directed

Supplementary files

Article information

Article type
Paper
Submitted
10 Dec 2015
Accepted
29 Feb 2016
First published
29 Feb 2016

Phys. Chem. Chem. Phys., 2016,18, 8625-8636

Author version available

Hydrogen-atom attack on phenol and toluene is ortho-directed

O. Krechkivska, C. M. Wilcox, T. P. Troy, K. Nauta, B. Chan, R. Jacob, S. A. Reid, L. Radom, T. W. Schmidt and S. H. Kable, Phys. Chem. Chem. Phys., 2016, 18, 8625 DOI: 10.1039/C5CP07619F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements