Issue 8, 2016

Three-dimensional splitting microfluidics

Abstract

Microfluidic systems with splitting structures are excellent for increasing emulsion production. However, traditional two-dimensional (2D) lithographic systems require complex modification of the microchannel surfaces and achieve only 2D splitting of the droplets. Herein, we present new glass capillary microfluidic devices that perform three-dimensional (3D) splitting of droplets. These devices are simply constructed using different structural glass capillaries as the collection microchannels of the droplet microfluidic systems. We demonstrate that the devices are able to produce a 3D split of both single emulsions and double emulsions into two and three portions, respectively. These emulsions, after the splitting process, still have high monodispersity. We believe that this new technique for 3D splitting could be widely used, not only in the field of microfluidics but also in chemical/biological applications (e.g., drug delivery, micro-dispersion, etc.).

Graphical abstract: Three-dimensional splitting microfluidics

Supplementary files

Article information

Article type
Communication
Submitted
09 Feb 2016
Accepted
15 Mar 2016
First published
15 Mar 2016

Lab Chip, 2016,16, 1332-1339

Three-dimensional splitting microfluidics

Y. Chen, W. Gao, C. Zhang and Y. Zhao, Lab Chip, 2016, 16, 1332 DOI: 10.1039/C6LC00186F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements