Issue 2, 2016

Magnetoelectric micromachines with wirelessly controlled navigation and functionality

Abstract

The use of a single energy source for both manipulating micromachines and triggering their functionalities will result in highly integrated devices and simplify the design of the controlling platform. Here, we demonstrate this concept employing magnetoelectric Janus particle-based micromachines, which are fabricated by coating SiO2 microspheres with a CoFe2O4–BaTiO3 bilayer composite. While the inner magnetic CoFe2O4 layer enables the micromachines to be maneuvered using low magnitude rotating magnetic fields, the magnetoelectric bilayer composite provides the ability to remotely generate electric charges upon the application of a time-varying magnetic field. To demonstrate the capabilities of these micromachines, noble metals such as Au, Ag and Pt are magnetoelectrochemically reduced from their corresponding precursor salts and form nanoparticles on the surface of the micromachines. Magnetoelectric micromachines are promising devices for their use as metal scavengers, cell stimulators and electric field-assisted drug delivery agents.

Graphical abstract: Magnetoelectric micromachines with wirelessly controlled navigation and functionality

Supplementary files

Article information

Article type
Communication
Submitted
02 Nov 2015
Accepted
08 Dec 2015
First published
08 Dec 2015

Mater. Horiz., 2016,3, 113-118

Author version available

Magnetoelectric micromachines with wirelessly controlled navigation and functionality

X. Chen, N. Shamsudhin, M. Hoop, R. Pieters, E. Siringil, M. S. Sakar, B. J. Nelson and S. Pané, Mater. Horiz., 2016, 3, 113 DOI: 10.1039/C5MH00259A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements