Issue 33, 2016

Enhanced electrochemical performance of Al–0.9Mg–1Zn–0.1Mn–0.05Bi–0.02In fabricated from commercially pure aluminum for use as the anode of alkaline batteries

Abstract

In this study, the electrochemical performance of new fabricated Al–0.9Mg–1Zn–0.1Mn–0.05Bi–0.02In (wt%) from commercially pure aluminum has been determined by using open circuit potential–time measurement (OCP), galvanostatic discharge, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) reveal that the main precipitates in Al–0.9Mg–0.1Mn–0.02In and Al–0.9Mg–1Zn–0.1Mn–0.05Bi–0.02In alloys are Mg2Si and MgZn2 phases, which act as corrosion centers. The corrosion potentials of mentioned phases are more negative than that of Al. It was found that simultaneous use of alloying elements with the ability to remove the oxide film and high hydrogen over-potential could lead to activation of the alloy with lower self-corrosion rate and improved galvanic efficiency. In order to reduce the harmful effects of iron in the composition of commercially pure aluminum, manganese has been used. The results show that Al–0.9Mg–1Zn–0.1Mn–0.05Bi–0.02In is more active than the Al and Al–0.9Mg–0.1Mn–0.02In anode, and in comparison, the alloy has a lower self-corrosion rate in 4 M NaOH electrolyte. It has been observed that the galvanostatic discharge based on Al–0.9Mg–1Zn–0.1Mn–0.05Bi–0.02In offers more negative voltage and higher anodic utilization than those with Al–0.9Mg–0.1Mn–0.02In and Al.

Graphical abstract: Enhanced electrochemical performance of Al–0.9Mg–1Zn–0.1Mn–0.05Bi–0.02In fabricated from commercially pure aluminum for use as the anode of alkaline batteries

Article information

Article type
Paper
Submitted
24 Jan 2016
Accepted
08 Mar 2016
First published
10 Mar 2016

RSC Adv., 2016,6, 28055-28062

Enhanced electrochemical performance of Al–0.9Mg–1Zn–0.1Mn–0.05Bi–0.02In fabricated from commercially pure aluminum for use as the anode of alkaline batteries

H. Moghanni-Bavil-Olyaei and J. Arjomandi, RSC Adv., 2016, 6, 28055 DOI: 10.1039/C6RA02113A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements