Issue 83, 2016, Issue in Progress

A series of new silver selenites with d0-TM cations

Abstract

Systematic explorations of new phases in the Ag+–Ti4+/Zr4+/Nb5+/Ta5+–Se4+–O(F) system by hydrothermal syntheses or standard high temperature solid-state reactions resulted in four new mixed-metal silver selenites, namely, Ag3Ti3O3(SeO3)4F (1, P63), Ag2ZrF2(SeO3)2 (2, Cmca) and AgMO(SeO3)2 (M = Nb, 3; Ta, 4) in the space group Cmcm. Ag3Ti3O3(SeO3)4F features an interesting [Ti3O3(SeO3)4]2− 3D anionic framework composed of 1D chains of corner-sharing TiO6 octahedra which are further interconnected by tridentate bridging SeO32− anions, displaying 1D hexagonal channels of Ti6Se6 12-member rings (MRs) along the c-axis, filled by the Ag+ cations and isolated F anions. More interestingly, it displays a moderate strong Second-Harmonic Generation (SHG) response about 2 times that of KH2PO4 (KDP). Compound 2 features a novel 1D [ZrF2(SeO3)2]2 anionic chain composed of edge-sharing ZrO4F4 polyhedra in which two neighboring Zr4+ cations are further bridged by a pair of selenite anions. Compounds 3 and 4 are isostructural and their structures feature 1D anionic chains of [MO(SeO3)2] (M = Nb, Ta) which are separated by Ag+ cations, the 1D [MO(SeO3)2] (M = Nb, Ta) chain is formed by 1D chains of corner-sharing MO6 (M = Nb, Ta) octahedra in which two neighboring metal centers are also bridged by a pair of selenite anions. Other characterizations including thermal analyses, optical and luminescence property measurements have also been performed.

Graphical abstract: A series of new silver selenites with d0-TM cations

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2016
Accepted
15 Aug 2016
First published
18 Aug 2016

RSC Adv., 2016,6, 79681-79687

A series of new silver selenites with d0-TM cations

Q. Qian, F. Kong and J. Mao, RSC Adv., 2016, 6, 79681 DOI: 10.1039/C6RA17867G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements