Bin-Wen
Liu
,
Hui-Yi
Zeng
,
Xiao-Ming
Jiang
,
Guan-E
Wang
,
Shu-Fang
Li
,
Li
Xu
* and
Guo-Cong
Guo
*
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. E-mail: xli@fjirsm.ac.cn; gcguo@fjirsm.ac.cn
First published on 1st June 2016
Mid-far infrared (IR) non-linear optical (NLO) materials are of great importance in military and civil fields. However, commercial IR-NLO crystals (such as AgGaS2, AgGaSe2 and ZnGeP2) do not currently satisfy the requirements of large second-harmonic generation (SHG) and high laser induced damage thresholds (LIDTs), which seriously limits their practical applications. Herein, we have developed a new series of salt-inclusion chalcogenides, [A3X][Ga3PS8] (A = K, Rb; X = Cl, Br), which are constructed from alternate stacking of adamantane-like [Ga3PS10]6− cluster layers and cationic [A3X]2+ salt layers. Importantly, they display both large SHG responses of several-fold and high LIDTs for dozens of times that of commercial AgGaS2, which exhibit the highest LIDTs among the reported IR-NLO materials with a larger SHG conversion efficiency than that of AgGaS2. These properties together with wide transparent region, type I phase-matching features and congruent-melting behaviors indicate they are promising IR-NLO materials.
Salt-inclusion compounds, an interesting class of host–guest materials, produce a mixed framework wherein species of different structures and functions can be assembled, which may lead to a new compounds possessing diverse structures, improved properties, and unique functions.17 However, prior to our investigation, the salt-inclusion compounds reported were mainly oxides that are generally unfavorable to use as IR-NLO materials. Herein, we extend the exploration to salt-inclusion chalcogenides, resulting in the discovery of several novel IR-NLO material systems, [K3Cl][Ga3PS8] (1), [Rb3Cl][Ga3PS8] (2), [K3Br][Ga3PS8] (3), and [Rb3Br][Ga3PS8] (4), which were constructed from alternate stacking of adamantane-like [Ga3PS10]6− cluster layers and cationic [A3X]2+ (A = K, Rb; X = Cl, Br) layers along the c-axis. Remarkably, compounds 1–4 exhibit concurrently large SHG responses of 4, 5, 7, and 9 times at 1064 nm (1.0, 1.1, 1.2 and 2.0 times at 1950 nm) and high LIDTs of 39, 37, 32, and 31 times that of benchmark AGS, respectively. In addition, broad transparency range, type I phase-matching behaviors, as well as congruent-melting features indicate that they are promising IR-NLO materials.
In the structure of the Cl-analogues, three [GaS4] tetrahedra are corner-shared with each other to build a triangular tetrahedral trimer, on which the [PS4] tetrahedron is capping to yield an adamantane-like [Ga3PS10]6− cluster (Fig. 1a). Each [Ga3PS10]6− cluster shares two triangular corners S(4) along the a-direction to form a chain, which further shares the third triangular corner S(6) with the middle of triangular tetrahedral trimer in the neighboring chain along the b-direction to create an adamantane-like [Ga3PS10]6− cluster layer in the ab-plane (Fig. 1a), whereas the anionic layers in the Br-analogues have the same conformation as those in the Cl-analogues with the extending directions a and b exchanging (Fig. 1d). As listed in Table S2 and S3,† the Ga–S bond lengths and S–Ga–S bond angles in 1–4 are in the range of 2.225(1)–2.357(3) Å and 103.7(1)–115.1(1)°, respectively. These data are respectively comparable to those in related gallium sulfides, such as PbGa4S7,18 SnGa4S7,19 and Ba4CuGa5S12.20 The P–S bond distances and S–P–S bond angles in 1–4 fall in the range of 1.994(3)–2.112(4) Å and 105.7(1)–113.7(1)°, respectively, which are comparable to those in AZrPS6 (A = K, Rb, Cs),21 and K9Nd[PS4]4.22
The cationic [A3X]2+ layers in 1–4 can be considered as constructed from the distorted X-centered quadrangular pyramids, [XA5]4+, which are corner-shared with each other along the a- and b-directions to become approximately co-planar with all the apexes pointing along the same direction, resulting in an acentric [A3X]2+ layer (Fig. 1c and f). The cationic [A3X]2+ and adamantane-like [Ga3PS10]6− cluster layers are further anchored to each other through A–S interactions (Fig. S3†) to build a pseudo 3D structure, in which the adjacent layers are highly acentric in nature stacked alternately along the c-axis and pack in a non-centrosymmetric (NCS) fashion.
Interestingly, despite having the same stoichiometric ratio and similar layer motif, the Cl-analogues and the Br-analogues crystallize in different space groups, which arises from the different stacking fashions of the anionic [Ga3PS8]2− layers and cationic [A3X]2+ layers along the c-axis. In the Br-analogues, the neighboring [Ga3PS10]6− cluster layers stack along the c-direction without a transversal shift in the ab-plane. Differently, the neighboring [Ga3PS10]6− cluster layers in the Cl-analogues are stacked with a shift of a/2 along the a-direction and a shift of 0.128b along the b-direction, which results in doubling the c-axis and unit cell volume. In comparison with Cl− (ionic radius: 1.61 Å), the larger Br− (ionic radius: 1.82 Å) anion in the X− site make the [A3X]2+ salt sub-lattices different, which further leads to the interactions between the anionic and cationic layers changing, for example, the Rb(1)–S(1) interaction is weakened, as shown by their distances increasing from 3.700 Å in 2 to 4.024 Å in 4 (Fig. S3†). These variations originate from the [A3X]2+ salt sublattices changing and may be responsible for the change in the space group from Pmn21 for the Cl-analogues to Pm for the Br-analogues. Moreover, the acentric [A3X]2+ layer can greatly affect or directly determine the bulk acentricity, which demonstrates that the ionic salt in the salt-inclusion chalcogenide may act as a structure directing agent during the formation of the NCS compounds. These discoveries provide an enormous playground for further rational design of functional host–guest frameworks.
The differential scanning calorimetry (DSC) results show that compounds 1–4 undergoes melting upon heating and crystallization upon cooling events (Fig. 2). The powder XRD patterns of the residue from one melting/recrystallization cycle are in good agreement with those of the initially synthesized products and simulated ones from their CIFs (Fig. S4†), indicating these phases are congruently melting. When compared to the known IR-NLO materials, such as AGS (996 °C),23 LiGaS2 (1050 °C),24 and BaGa4S7 (1090 °C),13 compounds 1–4 have relatively lower melting temperatures (621, 655, 628 and 621 °C for 1–4, respectively). These results reveal that large crystals for further physical property studies can be grown using the Bridgman method at lower temperatures.
Fig. 2 DSC curves revealing the melting and recrystallization events of 1 (a), 2 (b), 3 (c) and 4 (d). |
The UV-visible-NIR diffuse reflectance spectra in Fig. S5† shows strong absorption edges at 3.60, 3.65, 3.85, and 3.50 eV for 1–4, respectively, which are comparable to those of Li-contained chalcogenides such as LiGaS2 (3.87 eV),10 Li2Ga2GeS6 (3.65 eV),12 and Li2CdGeS4 (3.15 eV).25 In comparison with the values of AGS (2.62 eV)26 and ZGP (1.75 eV),8 compounds 1–4 have relatively wider band gaps, demonstrating that they can avoid two-photon absorption (TPA) of the conventional 1064 nm incident laser and subsequently benefit from an improved LIDT. The further absorption spectrum in Fig. S6† shows that the absorption peak at about 609 and 530 cm−1 was attributed to the intrinsic absorption of the P–S bond,27i.e., there is no intrinsic absorption of chemical bonds in a broad spectral range from 0.35 to 16.5 μm (Fig. S5 and S6†), suggesting that they may be suitable for a variety of NLO applications in longer wavelength regions.
Because [GaS4] and [PS4] tetrahedra are well known NLO-active building units and the cationic [A3X]2+ and adamantane-like [Ga3PS10]6− cluster layers are highly acentric in nature that pack in a NCS fashion, it can be expected that compounds 1–4 may achieve large SHG responses. Powder SHG measurements were carried out using a modified Kurtz powder method,28 with a lower-intensity laser than the damage threshold of AGS. A polycrystalline AGS (deff = 18 pm V−1)29 sample was used as the reference material. The SHG intensities of 1–4 increase upon increasing the particle size and then reach a relatively flat trend after a certain particle size using an incident laser at 1064 nm and 1950 nm (Fig. 3 and S7†), suggesting type I phase-matching behavior. Remarkably, compounds 1–4 possess large SHG signals of 4, 5, 7, and 9 times at 1064 nm (1.0, 1.1, 1.2 and 2.0 times at 1950 nm) that of AGS, respectively (Fig. S8†), in which the Br-analogues exhibited stronger SHG signals, followed by the Cl-analogues.
The powder LIDT data of 1–4 and benchmark AGS were accessed by the single pulse powder LIDT method.30 As illustrated in Fig. 4 and Table S5,† the powder LIDTs of 1–4 are 78.5, 74.7, 64.5, and 61.2 MW cm−2 using an incident laser at 1064 nm, 10 ns and 1 Hz, showing 39, 37, 32, and 31 times that of AGS (2.0 MW cm−2), respectively, which are larger than those of Ba4ZnGa4Se10Cl2 (17× AGS),31 Pb17O8Cl18 (12.8× AGS),32 Cu2ZnSiS4 (∼6× AGS),33 SnGa4S7 (19× AGS),19 Li2CdGeS4 (∼17× AGS),34 Na2BaGeS4 (8× AGS),35 and Na2Hg3Si2S8 (4.5× AGS),36 and are comparable to those of Ba8Sn4S15 (26× AGS),37 Ba2Ga8GeS16 (22× AGS),38 and Li2MnGeS4 (∼40× AGS).39 Importantly, it is worth noting that compounds 1–4 exhibit the highest LIDTs among the IR-NLO materials that have a larger SHG conversion efficiency than AGS. Their good thermal and chemical stability, as well as large band gaps, which can make these phases be able to sustain laser illumination at 1064 nm without invoking TPA problems, are believed to make a significant contribution to the improvement of LIDTs. These observations indicate that compounds 1–4 not only exhibit a strong SHG but also have high LIDTs, which should be good candidates for high-power IR-NLO applications.
To better understand the optical properties, theoretical calculations based on DFT methods were performed. The band structure calculations show that the Cl-analogues are indirect band structures with the band gaps of 2.26 and 2.36 eV for 1 and 2, whereas the Br-analogues are direct band structures with band gaps of 2.60 and 2.48 eV for 3 and 4, respectively (Fig. S9†). The bands can be assigned according to the total and partial DOSs in Fig. S10.† For 1–4, the conductive bands (CBs) close to the Fermi level are mostly composed of Ga 4s and 4p, S 3p and P 3p states, mixing with small amounts of K 3p and 4s (Rb 4p and 5s) states, whereas the valence bands (VBs) close to the Fermi level originate predominately from S 3p and Cl 3p (Br 4p) states; therefore, their optical absorptions can mainly be ascribed to the charge transfer from the S 3p and Cl 3p (Br 4p) states to the Ga 4s and 4p, S 3p, P 3p and K 3p and 4s (Rb 4p and 5s) states.
To gain further insights into the NLO properties, calculations of the second-order NLO susceptibility were also performed to explain their SHG efficiencies. The calculated real part ε1(ω) and the imaginary part ε2(ω) of the frequency-dependent optical dielectric functions of 1–4 are illustrated in Fig. S11 and S12.† It can be found from the dispersion of the calculated ε2(ω) spectra that the maximum absorption peaks are located at about 5.95 and 8.36 eV for 1; 6.01 and 8.20 eV for 2; 5.96 and 8.07 eV for 3; and 5.57 and 7.65 eV for 4, which are mainly attributed to the charge transfers from S 3p and Cl 3p (Br 4p) states to Ga 4s and 4p, S 3p, P 3p and K 3p and 4s (Rb 4p and 5s) states, according to the abovementioned DOS analysis. Under the restriction of Kleinman symmetry, the Cl- and Br-analogues have three and six independent second-order dielectric tensor elements due to their mm2 and m point symmetry, which are related to the SHG coefficients d15, d24, and d33; as well as d11, d12, d13, d15, d24 and d33, respectively. As shown in Fig. 5, the calculated d15, d24 and d33 are 26.7, 26.1 and 26.5 pm V−1 for 1, 30.7, 30.3, 29.8 pm V−1 for 2; d11, d12, d13, d15, d24 and d33 coefficients are 45.2, 45.3, 44.1, 44.6, 45.0 and 43.6 pm V−1 for 3, 50.9, 50.2, 49.2, 50.1, 49.7 and 48.5 pm V−1 for 4, respectively, at the wavelength of 1064 nm (1.165 eV). This shows that the calculated average NLO coefficients dij display an increasing trend with the following order: 1 (22.5 pm V−1) < 2 (25.6 pm V−1) < 3 (44.6 pm V−1) < 4 (49.7 pm V−1), which is in accordance with the experimental observations.
Footnote |
† Electronic supplementary information (ESI) available. CSD 429893–429896. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc01907b |
This journal is © The Royal Society of Chemistry 2016 |