Issue 18, 2017

Practical corrections for p(H,D) measurements in mixed H2O/D2O biological buffers

Abstract

Mixtures of light and heavy water are used in NMR, small-angle neutron scattering (SANS), growth media for producing deuterated biological molecules, and analytical methods such as hydrogen–deuterium exchange (HDX) mass spectrometry. It is common to measure the pH of these solutions with a combination glass electrode with all chambers filled with aqueous (H2O) potassium chloride solutions. In the daily measurement of samples containing mixtures of H2O with D2O in some ratio – call this measurement p(H,D) – we generally do not control for all of the contributions to the differences measured in carefully controlled electrochemical experiments. For example, the calibration solutions contain relatively low concentrations of the calibrant buffer with low or no added salt. Meanwhile the tested solutions can contain widely varying levels of any number of different salts as well as both polar and nonpolar organics and polymers and proteins. In this note, the p(H,D) behaviors of 50 mM solutions of five different buffers used in biological in vitro solutions were measured over the full range of H2O : D2O ratios in the open atmosphere. After calibration, pH measurements were made with the buffer solutions alone and with 100 mM KCl added to model a significant ionic strength difference. The solutions consisted of 1 : 1 volume mixtures of the acid and base forms of acetate, monobasic/dibasic phosphate, 2-amino-2-hydroxymethyl-propane-1,3-diol (tris), 2-amino-2-hydroxymethyl-propane-1,3-diol (HEPES), and glycine to span the common, full range for biological buffers. The pH values of the 1 : 1 mixtures mean that the measurements were, in fact, of their formal pKa values. Each of the buffers exhibited a unique pattern of behavior, and none of them exhibited a measured ΔpKa = pKDa − pKHa as large as 0.4, a value that has been suggested to be added to a pH measured in H2O to match the equivalent pD measured in D2O. The results do indicate that when a reasonable, required accuracy for pH measurement is ±0.1 units, three general guidelines apply: (1) where p(H,D) values are less than 8 for any D2O content, no correction is needed for the p(H,D) measurement when comparing it to pHH; (2) for less than 50% D2O, if the 8 < p(H,D) < 10, again no correction is needed for the p(H,D) measurement compared to pHH; (3) when the D2O content is greater then 50% and the p(H,D) > 8, any corrections required will depend on the specific conditions and the specific buffer. Outside of the range 4 < p(H,D) < 10 or for needed greater accuracy, any corrections required will depend on the specific conditions and the identity of the buffer.

Graphical abstract: Practical corrections for p(H,D) measurements in mixed H2O/D2O biological buffers

Supplementary files

Article information

Article type
Technical Note
Submitted
13 Mar 2017
Accepted
20 Apr 2017
First published
24 Apr 2017

Anal. Methods, 2017,9, 2744-2750

Practical corrections for p(H,D) measurements in mixed H2O/D2O biological buffers

K. A. Rubinson, Anal. Methods, 2017, 9, 2744 DOI: 10.1039/C7AY00669A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements