The influence of tumor-induced immune dysfunction on the immune cell distribution of gold nanoparticles in vivo†
Abstract
Gold nanoparticles (AuNPs) have been extensively explored as a drug carrier and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy for cancer. Although the mononuclear phagocyte system and immune system are known to play the main roles in the clearance of AuNPs during the circulation, the particle distribution within the immune cells under the condition of immune dysfunction caused by tumor growth has not been thoroughly studied. Here, the cellular distribution of Cy5 labeled AuNPs with diameters of 5, 30 and 50 nm is characterized within the immune populations of the blood, spleen and bone marrow from tumor free and tumor bearing mice using flow cytometry. Tumor-associated immune dysfunction was observed in all immune organs and cell lineages, and it changed with tumor growth. Furthermore, the particle cellular distribution significantly changed in the tumor bearing mice compared with the tumor free mice. Finally, the particle distribution in the immune cells was also different at different stages of the tumor. Overall, these results can help inform and influence future AuNP design criteria including the future applications for nanoparticle-mediated cancer therapy.
- This article is part of the themed collection: Emerging Investigators 2017