Theoretical investigation of proton collisions on prebiotic candidates: hydrogen cyanide polymers†
Abstract
One of the major concerns in prebiotic chemistry is the formation and destruction routes of prebiotic compounds in space. As detected for a long time, hydrogen cyanide (HCN) has been suggested to be a feedstock molecule at the origin of life driving easy oligomerization, in particular to form adenine. This may focus on its first oligomers because its dimer cyanomethanimine was recently observed in star-forming regions, or its trimer aminomalononitrile. With regard to the assumption of an extra-terrestrial origin of life, the stability of such species under ultraviolet radiation or in ion-collisions is an open question. Thus, we investigated theoretically the proton collisions with dimer and trimer isomers of HCN in a wide impact energy range to model various astrophysical environments and exhibit qualitative tendencies.
- This article is part of the themed collection: XUV/X-ray light and fast ions for ultrafast chemistry