Issue 5, 2017

Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film

Abstract

A molecular water oxidation catalyst, [Ru(tpy)(dcbpy)(OH2)](ClO4)2 (tpy = 2,2′:6′,2′′-terpyridine, dcbpy = 2,2′-bipyridine-5,5′-dicarboxylic acid) [1], has been incorporated into FTO-grown thin films of UiO-67 (UiO = University of Oslo), by post-synthetic ligand exchange. Cyclic voltammograms (0.1 M borate buffer at pH = 8.4) of the resulting UiO67-[RuOH2]@FTO show a reversible wave associated with the RuIII/II couple in the anodic scan, followed by a large current response that arises from electrocatalytic water oxidation beyond 1.1 V vs. Ag/AgCl. Water oxidation can be observed at an applied potential of 1.5 V over the timescale of hours with a current density of 11.5 μA cm−2. Oxygen evolution was quantified in situ over the course of the experiment, and the Faradaic efficiency was calculated as 82%. Importantly, the molecular integrity of [1] during electrocatalytic water oxidation is maintained even on the timescale of hours under turnover conditions and applied voltage, as evidenced by the persistence of the wave associated with the RuIII/II couple in the CV. This experiment highlights the capability of metal organic frameworks like UiO-67 to stabilize the molecular structure of catalysts that are prone to form higher clusters in homogenous phase.

Graphical abstract: Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2016
Accepted
01 Nov 2016
First published
08 Nov 2016

Dalton Trans., 2017,46, 1382-1388

Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film

B. A. Johnson, A. Bhunia and S. Ott, Dalton Trans., 2017, 46, 1382 DOI: 10.1039/C6DT03718F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements