Issue 10, 2017

Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation

Abstract

Based on the same in situ formed ligand, two new MOFs, namely {[Zn2(HL)2]·0.5DMF·H2O}n (1) and {[Cd2(HL)2]·1.5H2O}n (2) (H3L = 5-[(2H-tetrazol-5-yl)amino]isophthalic acid), have been solvothermally synthesized and structurally characterized by elemental analysis, IR, PXRD, and single-crystal X-ray diffraction. During the self-assembly process, the original ligand H2ATBDC (5-(5-amino-1H-tetrazol-1-yl)-1,3-benzenedicarboxylic acid) undergoes the Dimroth rearrangement to form a new ligand H3L, consequently contributing to the construction of the two new MOFs. Structural analysis reveals that both 1 and 2 possess a three-directional intersecting channel system and pts topology. The major structural difference between them is the metal coordination, which displays four- and six-coordinated modes in 1 and 2, respectively, and results in diverse channels and different stabilities. Moreover, the adsorption properties of 1a (i.e., the desolvated 1) have been studied, and the results show that 1a possesses moderate capability of gas sorption for N2, CO2, and CH4 gases, along with high selectivity ratios of 102 and 20 for CO2/N2 (15 : 85) and CO2/CH4 (50 : 50) at 273 K, respectively.

Graphical abstract: Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation

Supplementary files

Article information

Article type
Paper
Submitted
02 Jan 2017
Accepted
14 Feb 2017
First published
15 Feb 2017

Dalton Trans., 2017,46, 3223-3228

Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation

Q. Li, M. Yu, J. Xu, A. Li, T. Hu and X. Bu, Dalton Trans., 2017, 46, 3223 DOI: 10.1039/C7DT00005G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements