Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles†
Abstract
Chitosan (CHI) nanoparticles present promising applications in pharmaceutical and biomedical fields, including drug and gene delivery. Among different approaches, microfluidics emerges as a resourceful tool for nanoparticle production in low-cost, reproducible processes with predictable fluid dynamics. However, microfluidic-assisted synthesis of CHI nanoparticles has not been widely explored in the literature. In this context, we systematically investigated different process parameters that influence the synthesis of CHI/ATP nanoparticles. We highlight the effects and limitations of diffusion and distinct mixing patterns developed through the microchannels on the final physicochemical characteristics of CHI/ATP nanoparticles produced. To address these hurdles, here we describe a simple, feasible, and reproducible method for the production of CHI/ATP nanoparticles. This strategy enables the development of a continuous and homogeneous production process for CHI nanoparticles to be applied in the most varied fields of research.