Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Oxidative bicyclization of N-tethered 1,7-enynes toward polycyclic 3,4-dihydroquinolin-2(1H)-ones via site-selective decarboxylative C(sp3)–H functionalization

Jie Li a, Wen-Juan Hao *a, Peng Zhou a, Yi-Long Zhu ab, Shu-Liang Wang a, Shu-Jiang Tu a and Bo Jiang *a
aSchool of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China. E-mail: wjhao@jsnu.edu.cn; jiangchem@jsnu.edu.cn; Fax: +86 51683500065; Tel: +86 51683500065
bBiotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China

Received 22nd December 2016 , Accepted 28th January 2017

First published on 2nd February 2017


Abstract

A new Ag-catalyzed oxidative bicyclization of N-tethered 1,7-enynes with alkylcarboxylic acids for forming 41 examples of polycyclic 3,4-dihydroquinolin-2(1H)-ones has been established using readily accessible K2S2O8 as an oxidant. The reaction pathway involves a silver-catalyzed decarboxylation/in situ-generated C-center radical-triggered α,β-conjugated addition/6-exo-dig cyclization/H-abstraction/5-endo-trig cyclization/SET sequence, allowing direct site-selective decarboxylative C(sp3)–H functionalization toward the formation of multiple C–C bonds and rapid construction of complex spiroheterocycles.


Introduction

Molecules containing all-carbon quaternary stereocenters are ubiquitously distributed in natural products and bioactive substances, which have been found to exhibit a variety of biological and pharmacological activities.1 Accordingly, the construction of sterically restricted quaternary stereocenters has attracted the interest of synthetic chemists because of their special structural features and their tendency to tightly bind to target molecules.2 As a result, numerous efforts have been devoted to develop efficient methodologies for their direct construction,3 which generally involved pericyclic,4 alkylation,5 photochemical,6 transition metal-catalyzed,7 radical,8 and semipinacol rearrangement reactions.9 Among which, oxidative radical reactions have been proved to be a high-efficient synthetic strategy toward these molecules contained all-carbon quaternary stereocenters.10 For instance, Nevado and co-workers reported radical-triggered aryl migration strategies to construct all-carbon quaternary stereocenters via desulfonylative bi-functionalization of N-aryl-N-arylsulfonyl methacrylamides.11 However, to the best of our knowledge, catalytic decarboxylative C(sp3)–H functionalization for the construction of spiro-quaternary stereocenters through radical-triggered bicyclization is virtually unexplored.

1,7-Enynes are types of competent reactants endowed with multiple reactive sites, which could be used as versatile and synthetically useful feedstocks for the construction of molecules containing multiple functionalities.12 Specifically, oxidative radical 1,7-enyne-cyclizations have gradually become a powerful platform for rapid collection of cyclic compounds with all-carbon quaternary stereocenters via synergistic processes across the C[double bond, length as m-dash]C and C[triple bond, length as m-dash]C bond systems in a single step fashion.13 These reactions feature annulation efficiency, extreme convergence while minimizing the generation of waste. Recently, we reported the addition of various C-centered radicals to N-tethered 1,7-enynes, which underwent a radical addition–cyclization/H-abstraction/radical coupling sequence to access spiro-fused cyclopenta[c]quinolones (Scheme 1a).14 Meanwhile, Li and co-workers presented a metal-free radical [2 + 2 + 1] carbocyclization reaction of N-tethered 1,7-enynes with two C(sp3)–H bonds adjacent to a heteroatom to build similar spirocyclic compounds (Scheme 1b), but only trace amount of spirocyclic compound was observed when R is a strong electron-withdrawing Ts group.15 For this reaction, we attempted to employ N-Ts tethered 1,7-enyne 1a to react with 2,3-dihydrobenzo[b][1,4]dioxine under the above reported conditions.14,15 Unluckily, the reaction hardly proceeded with observation of trace amount of the expected product 3a as most of the starting materials remained unreacted. These unsatisfactory results led us to change synthetic strategy for spiro-fused 3,4-dihydroquinolin-2(1H)-one preparation.16 A survey revealed that decarboxylative coupling reactions have become a powerful tool for the collection of functionalized molecules through direct carbon–carbon bond formation.17 Considering Ag-catalyzed decarboxylation often trapped by a radical process,17 we envisaged that 2,3-dihydrobenzo[b][1,4]dioxine-2-carboxylic acid as a potential radical donor was subjected to the reaction with N-Ts tethered 1,7-enynes in Ag-catalysis, enabling decarboxylative C(sp3)–H functionalization to access the expected spiro-fused 3,4-dihydroquinolin-2(1H)-ones. Herein, we report the successful implementation of this idea with these special and practical transformations in which a wide range of spiro-fused 3,4-dihydroquinolin-2(1H)-ones 3 were achieved through Ag-catalyzed decarboxylative bicyclizations of N-tethered 1,7-enynes 1 and 2,3-dihydrobenzo[b][1,4]dioxine-2-carboxylic acid 4a. Using cycloalkyl- (e.g. cyclopentyl 4b, cyclohexyl 4c, 4-methylcyclohexyl 4d, cyclobutyl 4e) and alkyl-substituted (e.g. pentan-3-yl 4f, isopropyl 4g, and sec-butyl 4h) carboxylic acids as radical donors to expand the synthetic utility of this methodology, the reaction smoothly proceeds through a similar decarboxylative bicyclizations, delivering a series of important fused 3,4-dihydroquinolin-2(1H)-ones 5 with two quaternary stereocenters. To the best of our knowledge, this is the first site-selective decarboxylative C(sp3)–H functionalization of alkylcarboxylic acids for the assemble of these special polycyclic 3,4-dihydroquinolin-2(1H)-ones with excellent diastereoselectivity through an oxidative silver-catalysis.


image file: c6ra28589a-s1.tif
Scheme 1 Cascade bicyclization of 1,7-enynes.

Results and discussion

Our initial investigation was started with the treatment of N-Ts tethered 1,7-enyne 1a (1.0 equiv.) by 2,3-dihydrobenzo[b][1,4]dioxine-2-carboxylic acid (4a, 2.0 equiv.) under air conditions in a 1[thin space (1/6-em)]:[thin space (1/6-em)]1 ratio of MeCN–H2O mixture at 80 °C. The reaction in the presence of AgNO3 (20 mol%) and K2S2O8 (4.0 equiv.) led to the selective formation of the expected product 3a as a sole diastereoisomer in 48% yield (dr > 99[thin space (1/6-em)]:[thin space (1/6-em)]1 established on the basis of 1H NMR) (Table 1, entry 1). Lowering the loading of AgNO3 to 10 mol% gave a higher yield of 59% (entry 2). In contrast, increasing the dosage of K2S2O8 to 5.0 equivalents resulted in an inferior outcome (entry 3). The relatively lower conversion into 3a was detected when temperature was elevated to 100 °C (entry 4) whereas fine-tuning the ratio of 1a with 4a to 1[thin space (1/6-em)]:[thin space (1/6-em)]2.5 still decreased the yield of 3a (entry 5). The use of 4[thin space (1/6-em)]:[thin space (1/6-em)]1 mixture of MeCN and H2O completely suppressed the reaction process (entry 6). As the next optimization step, we performed the screening of a variety of silver salts, including AgOAc, Ag2CO3, AgNTf2, AgOTf, and AgF, for this bicyclization at 80 °C by using 4.0 equiv. of K2S2O8 as an oxidant (entries 7–11). Unfortunately, all of these silver catalysts did not show higher catalytic activity than AgNO3. Changing mixed solvents of 1,2-dichloroethane (DCE)–H2O, tetrahydrofuran (THF)–H2O, 1,4-dioxane–H2O, and acetone–H2O revealed that all these media cannot further enhance yields (entries 12–15). Without AgNO3, the reaction did not work under oxidative conditions (entry 16).
Table 1 Optimization of the reaction conditionsa

image file: c6ra28589a-u1.tif

Entry Ag-Cat. (mol%) Solvent t (°C) Yieldb (%)
a Reaction conditions: 1a (0.20 mmol), 4a (0.4 mmol), Ag-catalyst (x mol%) K2S2O8 (0.8 mmol), mixed solvent (4 mL), 80 °C, air conditions. b Isolated yield based on substrate 1 by column chromatography. c Using 1.0 mmol of K2S2O8. d The ratio of 1a and 4a was in 1[thin space (1/6-em)]:[thin space (1/6-em)]2.5. N.D. = no detected. N.R. = no reaction.
1 AgNO3 (20) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 48
2 AgNO3 (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 59
3c AgNO3 (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 26
4 AgNO3 (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 100 37
5d AgNO3 (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 47
6 AgNO3 (10) CH3CN/H2O (4[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 N.D.
7 AgOAc (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 25
8 Ag2CO3 (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 Trace
9 AgNTf2 (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 33
10 AgOTf (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 Trace
11 AgF (10) CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 30
12 AgNO3 (10) DCE/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 N.D.
13 AgNO3 (10) THF/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 N.D.
14 AgNO3 (10) 1,4-Dioxane/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 25
15 AgNO3 (10) Acetone/H2O(1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 N.D.
16 CH3CN/H2O (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 80 N.R.


With the established optimal conditions (Table 1, entry 2), we set out to investigate the generality of this silver-catalyzed oxidative bicyclization by using a variety of N-tethered 1,7-enynes. We found that various substituents on the aromatic ring of both the alkynyl (R1) and sulfonyl (R2) moieties were proven not to hamper this Ag-catalysis, and a wide range of diastereoenriched spiro-fused 3,4-dihydroquinolin-2(1H)-ones 3a–3bb with structural diversity can be afforded in acceptable yields and a functional-group-compatible fashion (dr > 99[thin space (1/6-em)]:[thin space (1/6-em)]1 established on the basis of 1H NMR, Scheme 2). For instance, with the Ts protection group (R2) on the amine anchor, the variant of substituents on the arylalkynyl moiety, including MeO, F, and Cl can tolerate the catalytic conditions well. Electronic effect of substituents on the arylalkynyl moiety seems to show no impact on the reaction efficiency. However, n-butyl substituted 1,7-enyne 1e was not a good component for this reaction (Scheme 2, 3e), which may be ascribed to the relative instability of the vinyl radical intermediate (Scheme 2) generated in situ from C-centered radical triggered addition/6-exo-dig cyclization. Next, electronic nature of substituents on both N-arylalkynyl (R1) and arylsulfonyl (R2) moieties was probed. The reaction occurred smoothly with a variety of functional groups on both N-arylsulfonyl and arylalkynyl moieties of substrates 1. Various functional groups including methoxy, methyl, fluoride, chloride, and bromide at the para-positions of the aromatic ring directly bound to N-arylsulfonyl and/or arylalkynyl moieties were well tolerated under this system, delivering the corresponding spirocyclic cyclopenta[c]quinolines 3f–3t with yields ranging from 41% to 59%. Alternatively, sterically encumbered 1-naphthalenyl (1-Np) analogues 1u–1v were successfully engaged in the current bicyclization transformations, giving access to the corresponding cyclopenta[c]quinolines 3u–3v in moderate yields. The presence of both fluoro and chloro functionalities at C4 position of the internal arene rings of N-tethered 1,7-enynes proved to be more reluctant to undergo the reaction process, as diastereoenriched products 3w–3y were obtained in 35–41% yields. Similarly, replacing methyl group with aryl substituent on the terminal olefin unit, N-tethered 1,7-enyne 1z was a good reaction partner, enabling radical bicyclization to access product 3z in 50% yield. Besides, N-methyl 1,7-enynes 1aa and 1bb would be accommodated, confirming the reaction efficiency, as 3aa and 3bb with high diastereopurity were generated in 75% and 67% yields, respectively.


image file: c6ra28589a-s2.tif
Scheme 2 Domino synthesis of spiro-fused quinolin-2(1H)-ones 3. (a) Isolated yields based on 1,7-enynes 1 by column chromatography. (b) 1,7-Enynes 1 (0.20 mmol), 4a (0.4 mmol), AgNO3 (0.020 mol), K2S2O8 (0.8 mmol), and CH3CN–H2O (4.0 mL), at 80 °C for 12 hours.

After the successful utilization of various N-tethered 1,7-enynes 1 with carboxylic acid 4a, we continued to explore this decarboxylative bicyclization by the adoption of other seven examples of representative cycloalkyl- and alkyl-substituted carboxylic acids 4b–h as the coupling partner (Scheme 3). As we had expected, these reactions worked well to give access to the corresponding fused cyclopenta[c]quinoline products. Various cycloalkyl carboxylic acids including cyclopentyl 4b, cyclohexyl 4c, 4-methylcyclohexyl 4d, and cyclobutyl 4e could be efficiently converted into the corresponding spiro-fused 3,4-dihydroquinolin-2(1H)-ones 5a–g with yields ranging from 38% to 55% yields. Similarly, alkylcarboxylic acids such as pentan-3-yl 4f, isopropyl 4g and sec-butyl 4h can tolerate the catalytic oxidation conditions well. Among them, 4-methylcyclohexyl (4d) and sec-butyl (4h) counterparts delivered the desired diastereoselective isomers 5e and 5l–5m, respectively, albeit with moderate yields of 37–45%. It is noteworthy that the protocol provides a valuable pathway for the construction of fused cyclopenta[c]quinoline derivatives 5e and 5h–m in an atom-efficient fashion, which are normally difficult to synthesize by the previously reported methods.14,15 The stereostructural elucidation of the products was confirmed by their NMR and HRMS spectra. In the cases of 3a and 5j, both structures were unequivocally determined by X-ray analysis (Fig. 1 and 2).


image file: c6ra28589a-s3.tif
Scheme 3 Domino synthesis of fused quinolin-2(1H)-ones 5. (a) Isolated yields based on 1,7-enynes 1 by column chromatography. (b) 1 (0.3 mmol), 4b–4h (0.2 mmol), AgNO3 (0.020 mol), K2S2O8 (0.8 mmol), and CH3CN–H2O (4.0 mL), at 60 °C for 12 hours.

image file: c6ra28589a-f1.tif
Fig. 1 X-ray structure of 3a.

image file: c6ra28589a-f2.tif
Fig. 2 X-ray structure of 5j.

To gain mechanistic insight into this reaction, several control experiments were conducted. N-Tethered 1,7-enynes 1a was subjected to reaction with 4.0 equivalents of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or butylhydroxytoluene (BHT; Scheme 4), but no expected product 3a was observed with the starting material 1a remaining. For the former reaction, the TEMPO–2,3-dihydrobenzo[b][1,4]dioxine adduct was detected by LC-MS (MS = 291.2) analysis, which suggested that the reaction underwent a free-radical addition process, which is consistent with the mechanisms proposed in previous reports.17


image file: c6ra28589a-s4.tif
Scheme 4 Control experiments.

On the basis of our own observations and literature survey,13 a tentative mechanism is proposed in Scheme 5. The first step is to form the Ag(II) cation, derived from the oxidization of Ag(I) by the S2O82−, which captures a single electron from carboxylate and subsequent decarboxylation to produce the corresponding C-center radical A.18 Then, the intermolecular α,β-conjugated addition of the resulting C-center radical A onto N-tethered 1,7-enynes 1, followed by 6-exo-dig cyclization and H-abstraction affords alkyl radical intermediate D.15 The intramolecular 5-endo-trig cyclization (the addition of C-center radical onto the double bond of intermediate D) occurs to generate radical intermediate E, which undergoes a single electron transfer (SET) and deprotonation to give the desired products 3 and 5.


image file: c6ra28589a-s5.tif
Scheme 5 Proposed mechanisms for forming products 3 and 5.

Conclusions

In conclusion, we have developed a C-center radical-triggered bicyclization of N-tethered 1,7-enynes with a large variety of functional groups that provides efficient construction of richly decorated ploycyclic cyclopenta[c]quinolines with two all-carbon quaternary stereocenters via a sequential silver-catalyzed decarboxylation/C-center radical-induced α,β-conjugated addition/6-exo-dig cyclization/H-abstraction/5-endo-trig cyclization/SET process. This transformation offers a valuable replenishment for constructing a series of spirocyclic cyclopenta[c]quinolones with high diastereoselectivity through site-selective decarboxylative C(sp3)–H functionalization. The bond-forming/annulation efficiency, accessibility of starting materials, and functional group tolerance make this reaction a powerful synthetic tool with a great substrate scope. Further study on the scope extension of this reaction is currently underway in our laboratories.

Experiment

General information

All one-pot reactions were carried out in a 10 mL Schlenk tube equipped with a magnetic stir bar under air conditions. All melting points are uncorrected. The NMR spectra were recorded in CDCl3 or DMSO-d6 on a 400 MHz instrument with TMS as internal standard. Chemical shifts (δ) were reported in ppm with respect to TMS. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiples), coupling constant (J, Hz) and integration. HRMS analyses were carried out using a TOF-MS instrument with an ESI source. X-ray crystallographic analysis was performed with a SMART CCD and a P4 diffractometer.

General procedure for the synthesis of product 3a

A mixture of N-(2-(phenylethynyl)phenyl)-N-tosylmethacrylamide (1a, 83 mg, 0.2 mmol 1.0 equiv.), 2,3-dihydrobenzo[b][1,4]dioxine-2-carboxylic acid (2a, 72 mg, 0.4 mmol, 2.0 equiv.), AgNO3 (3.4 mg, 10 mol%) and K2S2O8 (216 mg, 0.8 mmol 4.0 equiv.) in a mixed solvent of MeCN (2.0 mL) and H2O (2.0 mL) was heated under air conditions at 80 °C for 12 hours. After completion of the reaction as indicated by TLC (petroleum ether: ethyl acetate 5[thin space (1/6-em)]:[thin space (1/6-em)]1), the reaction mixture was extracted with ethyl acetate and concentrated in vacuo. After that, the crude product was purified by flash column chromatography (silica gel, mixtures of petroleum ether/acetic ester, 50[thin space (1/6-em)]:[thin space (1/6-em)]1, v/v) to afford the desired pure product 3a.
3a′-Methyl-1′-phenyl-5′-tosyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3a). White solid, mp 215–216 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.85 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.0 Hz, 1H), 7.40–7.33 (m, 6H), 7.23–7.21 (m, 2H), 7.09–7.05 (m, 1H), 7.02–7.00 (m, 1H), 6.80–6.74 (m, 3H), 6.54–6.50 (m, 1H), 4.12 (d, J = 10.8 Hz, 1H), 4.08 (d, J = 12.0 Hz, 1H), 2.51 (s, 3H), 2.44 (d, J = 14.4 Hz, 1H), 2.32 (d, J = 14.8 Hz, 1H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.09, 144.85, 142.35, 140.24, 139.06, 137.07, 136.56, 135.01, 132.78, 131.89, 129.46, 129.44, 129.42, 128.93, 128.63, 128.52, 128.33, 128.30, 127.87, 127.40, 126.33, 124.18, 124.13, 121.61, 121.17, 117.68, 116.80, 86.12, 69.90, 54.54, 43.90, 24.63, 21.77; IR (KBr, ν, cm−1) 3046, 1716, 1652, 1558, 1494, 1360, 1265, 1166, 810, 755; HRMS (APCI-TOF) m/z calcd for: C33H28NO5S, 550.1688 [M + H]+; found: 550.1667.
1′-(4-Methoxyphenyl)-3a′-methyl-5′-tosyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3b). White solid, mp 213–214 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.85 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 1H), 7.38–7.33 (m, 3H), 7.17–7.14 (m, 2H), 7.11–7.04 (m, 2H), 6.90–6.87 (m, 2H), 6.81–6.75 (m, 3H), 6.54–6.50 (m, 1H), 4.12 (d, J = 11.2 Hz, 1H), 4.09 (d, J = 10.8 Hz, 1H), 3.82 (s, 3H), 2.50 (s, 3H), 2.42 (d, J = 14.8 Hz, 1H), 2.31 (d, J = 14.8 Hz, 1H), 1.20 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.19, 159.52, 144.82, 142.36, 139.81, 138.76, 136.58, 135.04, 130.65, 129.45, 128.53, 128.49, 127.46, 126.31, 124.74, 124.42, 124.11, 121.61, 121.15, 117.71, 116.79, 113.84, 86.07, 69.95, 55.26, 54.34, 43.80, 30.96, 24.51, 21.76; IR (KBr, ν, cm−1) 2974, 1722, 1645, 1574, 1471, 1361, 1248, 1118, 836, 747; HRMS (APCI-TOF) m/z calcd for: C34H30NO6S, 580.1794 [M + H]+; found: 580.1785.
1′-(4-Fluorophenyl)-3a′-methyl-5′-tosyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3c). White solid, mp 184–186 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.88 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.41–7.37 (m, 3H), 7.24–7.20 (m, 2H), 7.13–7.05 (m, 3H), 7.03–7.01 (m, 1H), 6.83–6.77 (m, 3H), 6.56–6.54 (m, 1H), 4.13 (d, J = 10.8 Hz, 1H), 4.09 (d, J = 11.2 Hz, 1H), 2.53 (s, 3H), 2.49 (d, J = 13.6 Hz, 1H), 2.34 (d, J = 14.8 Hz, 1H), 1.23 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.98, 162.64 (1JCF = 246.80 Hz), 144.92, 142.26 (4JCF = 2.20 Hz), 140.76, 138.09, 136.55, 135.06, 131.26 (3JCF = 8.10 Hz), 129.46, 128.80, 128.52, 127.32, 126.33, 124.12, 123.96, 121.70, 121.27, 117.59, 116.82, 115.48 (2JCF = 21.40 Hz), 85.85, 69.63, 54.53, 43.94, 24.78, 21.64; IR (KBr, ν, cm−1) 2977, 1716, 1699, 1598, 1494, 1361, 1264, 1169, 847, 772; HRMS (APCI-TOF) m/z calcd for: C33H27NO5SF, 568.1594 [M + H]+; found: 568.1561.
1′-(4-Chlorophenyl)-3a′-methyl-5′-tosyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3d). White solid, mp 222–223 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.85 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.37 (d, J = 8.0 Hz, 3H), 7.33 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.11–7.08 (m, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.77–6.75 (m, 3H), 6.53–6.51 (m, 1H), 4.11 (d, J = 10.8 Hz, 1H), 4.07 (d, J = 10.8 Hz, 1H), 2.50 (s, 3H), 2.46 (d, J = 14.8 Hz, 1H), 2.32 (d, J = 14.8 Hz, 1H), 1.21 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.91, 144.95, 142.25, 142.18, 140.91, 137.81, 136.51, 135.05, 134.44, 131.24, 130.84, 129.46, 128.89, 128.64, 128.51, 127.32, 126.38, 124.13, 123.85, 121.73, 121.31, 117.59, 116.83, 86.04, 69.82, 54.57, 43.94, 24.56, 21.75; IR (KBr, ν, cm−1) 2976, 1716, 1699, 1593, 1490, 1357, 1248, 1165, 833, 757; HRMS (APCI-TOF) m/z calcd for: C33H27NO5SCl, 584.1298 [M + H]+; found: 584.1278.
5′-((4-Methoxyphenyl)sulfonyl)-3a′-methyl-1′-phenyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3f). White solid, mp 178–179 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.93 (d, J = 8.8 Hz, 2H), 7.78 (d, J = 8.0 Hz, 1H), 7.40–7.35 (m, 4H), 7.25–7.23 (m, 2H), 7.11–7.02 (m, 4H), 6.83–6.77 (m, 3H), 6.60–6.57 (m, 1H), 4.14 (d, J = 10.8 Hz, 1H), 4.09 (d, J = 11.2 Hz, 1H), 3.95 (s, 3H), 2.48 (d, J = 14.8 Hz, 1H), 2.35 (d, J = 14.8 Hz, 1H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.20, 163.84, 142.37, 142.32, 140.34, 138.94, 135.04, 132.78, 131.01, 130.57, 129.44, 128.59, 128.31, 128.28, 127.33, 126.31, 124.30, 124.24, 121.62, 121.14, 117.77, 116.76, 113.97, 86.14, 69.93, 55.73, 54.62, 43.98, 24.69; IR (KBr, ν, cm−1) 2971, 1715, 1683, 1594, 1495, 1372, 1264, 1186, 831, 781; HRMS (APCI-TOF) m/z calcd for: C33H28NO6S, 566.1637 [M + H]+; found: 566.1629.
1′-(4-Methoxyphenyl)-5′-((4-methoxyphenyl)sulfonyl)-3a′-methyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3g). White solid, mp 201–203 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.90 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 8.0 Hz, 1H), 7.37–7.32 (m, 1H), 7.15 (d, J = 8.8 Hz, 2H), 7.11–7.01 (m, 4H), 6.88 (d, J = 8.4 Hz, 2H), 6.81–6.75 (m, 3H), 6.58–6.55 (m, 1H), 4.09 (s, 2H), 3.92 (s, 3H), 3.81 (s, 3H), 2.42 (d, J = 14.4 Hz, 1H), 2.31 (d, J = 14.4 Hz, 1H), 1.19 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.30, 163.81, 159.50, 142.38, 142.36, 139.92, 138.64, 135.06, 130.98, 130.64, 130.60, 128.49, 127.39, 126.29, 124.74, 124.47, 124.27, 121.61, 121.13, 117.80, 116.75, 113.96, 113.82, 86.10, 69.98, 55.72, 55.26, 54.42, 43.89, 24.57; IR (KBr, ν, cm−1) 2927, 1716, 1683, 1575, 1472, 1362, 1264, 1165, 834, 747; HRMS (APCI-TOF) m/z calcd for: C34H30NO7S, 596.1743 [M + H]+; found: 596.1744.
3a′-Methyl-1′-phenyl-5′-(phenylsulfonyl)-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3h). White solid, mp 182–184 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.96 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.73–7.69 (m, 1H), 7.62–7.58 (m, 2H), 7.37–7.34 (m, 4H), 7.23–7.20 (m, 2H), 7.10–7.06 (m, 1H), 7.03–7.01 (m, 1H), 6.77–6.74 (m, 3H), 6.55–6.52 (m, 1H), 4.11 (d, J = 10.8 Hz, 1H), 4.06 (d, J = 11.2 Hz, 1H), 2.45 (d, J = 14.8 Hz, 1H), 2.31 (d, J = 14.8 Hz, 1H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.07, 142.31, 142.28, 140.05, 139.53, 139.17, 134.98, 133.76, 132.73, 129.41, 128.84, 128.66, 128.39, 128.32, 127.44, 126.43, 124.21, 124.15, 121.66, 121.15, 117.76, 116.74, 86.07, 69.90, 54.54, 43.81, 24.60; IR (KBr, ν, cm−1) 2949, 1717, 1593, 1493, 1361, 1256, 1170, 1085, 837, 740; HRMS (APCI-TOF) m/z calcd for: C32H26NO5S, 536.1532 [M + H]+; found: 536.1513.
3a′-Methyl-5′-(phenylsulfonyl)-1′-(p-tolyl)-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3i). White solid, mp 185–187 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.96 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.72–7.69 (m, 1H), 7.61–7.57 (m, 2H), 7.38–7.32 (m, 1H), 7.17 (d, J = 7.6 Hz, 2H), 7.12–7.05 (m, 4H), 6.79–6.74 (m, 3H), 6.54–6.52 (m, 1H), 4.08 (s, 2H), 2.42 (d, J = 14.8 Hz, 1H), 2.36 (s, 3H), 2.31 (d, J = 14.8 Hz, 1H), 1.21 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.15, 142.36, 142.32, 139.76, 139.56, 139.18, 138.15, 134.99, 133.72, 129.62, 129.26, 129.07, 128.84, 128.58, 128.38, 127.50, 126.42, 124.41, 124.16, 121.64, 121.12, 117.82, 116.73, 86.08, 69.94, 54.47, 43.74, 24.53, 21.28; IR (KBr, ν, cm−1) 3086, 1716, 1683, 1576, 1489, 1387, 1262, 1086, 888, 750; HRMS (APCI-TOF) m/z calcd for: C33H28NO5S, 550.1688 [M + H]+; found: 550.1658.
1′-(4-Methoxyphenyl)-3a′-methyl-5′-(phenylsulfonyl)-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3j). White solid, mp 204–205 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.96 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 8.0 Hz, 1H), 7.72–7.68 (m, 1H), 7.60–7.56 (m, 2H), 7.38–7.34 (m, 1H), 7.17–7.07 (m, 4H), 6.88 (d, J = 8.4 Hz, 2H), 6.79–6.75 (m, 3H), 6.55–6.53 (m, 1H), 4.09 (s, 2H), 3.82 (s, 3H), 2.42 (d, J = 14.8 Hz, 1H), 2.31 (d, J = 14.8 Hz, 1H), 1.20 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.18, 159.54, 142.34, 139.65, 139.57, 138.89, 135.01, 133.74, 130.63, 128.84, 128.57, 128.37, 127.51, 126.41, 124.71, 124.46, 124.14, 121.67, 121.15, 117.80, 116.75, 113.85, 86.04, 69.96, 55.26, 54.35, 43.73, 24.49; IR (KBr, ν, cm−1) 3039, 1717, 1675, 1569, 1490, 1395, 1339, 1174, 833, 668; HRMS (APCI-TOF) m/z calcd for: C33H28NO6S, 566.1637 [M + H]+; found: 566.1615.
1′-(4-Chlorophenyl)-3a′-methyl-5′-(phenylsulfonyl)-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3k). White solid, mp 201–203 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.97 (d, J = 7.6 Hz, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.73–7.69 (m, 1H), 7.61–7.57 (m, 2H), 7.40–7.32 (m, 3H), 7.17–7.09 (m, 3H), 7.01 (d, J = 7.6 Hz, 1H), 6.78–6.75 (m, 3H), 6.55–6.53 (m, 1H), 4.10 (d, J = 10.8 Hz, 1H), 4.06 (d, J = 11.2 Hz, 1H), 2.46 (d, J = 14.8 Hz, 1H), 2.32 (d, J = 14.8 Hz, 1H), 1.21 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.91, 142.22, 142.17, 140.73, 139.49, 137.93, 135.03, 134.48, 133.84, 131.20, 130.82, 128.94, 128.86, 128.65, 128.41, 127.38, 126.50, 124.18, 123.89, 121.80, 121.31, 117.69, 116.80, 86.01, 69.83, 54.59, 43.88, 24.56; IR (KBr, ν, cm−1) 2948, 1716, 1683, 1575, 1496, 1361, 1268, 1173, 861, 760; HRMS (APCI-TOF) m/z calcd for: C32H25NO5SCl, 570.1142 [M + H]+; found: 570.1139.
5′-((4-Fluorophenyl)sulfonyl)-3a′-methyl-1′-phenyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3l). White solid, mp 155–157 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 8.00–7.97 (m, 2H), 7.74 (d, J = 8.4 Hz, 1H), 7.38–7.34 (m, 4H), 7.29 (s, 1H), 7.25 (d, J = 2.0 Hz, 1H), 7.21–7.19 (m, 2H), 7.11–7.07 (m, 1H), 7.05–7.02 (m, 1H), 6.79–6.72 (m, 3H), 6.57–6.55 (m, 1H), 4.10 (d, J = 10.8 Hz, 1H), 4.05 (d, J = 10.8 Hz, 1H), 2.46 (d, J = 14.8 Hz, 1H), 2.32 (d, J = 14.8 Hz, 1H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.14, 165.78 (1JCF = 255.50 Hz), 142.26 (3JCF = 8.30 Hz), 139.94, 139.28, 135.25 (4JCF = 3.20 Hz), 134.77, 132.63, 131.58, 131.49, 129.35, 128.69, 128.36, 127.46, 126.57, 124.26, 124.24, 121.82, 121.21, 117.68, 116.78, 116.12 (2JCF = 22.70 Hz), 86.16, 69.90, 54.59, 43.86, 24.62; IR (KBr, ν, cm−1) 2928, 1717, 1683, 1588, 1456, 1369, 1266, 1169, 835, 744; HRMS (APCI-TOF) m/z calcd for: C32H25NO5SF, 554.1437 [M + H]+; found: 554.1400.
5′-((4-Fluorophenyl)sulfonyl)-1′-(4-methoxyphenyl)-3a′-methyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3m). White solid, mp 160–162 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 8.00–7.97 (m, 2H), 7.75 (d, J = 8.4 Hz, 1H), 7.38–7.34 (m, 1H), 7.28–7.27 (m, 1H), 7.25–7.23 (m, 1H), 7.15–7.09 (m, 4H), 6.90–6.88 (m, 2H), 6.81–6.77 (m, 3H), 6.58–6.56 (m, 1H), 4.08 (s, 2H), 3.82 (s, 3H), 2.43 (d, J = 14.8 Hz, 1H), 2.32 (d, J = 14.8 Hz, 1H), 1.20 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.26, 165.78 (1JCF = 255.30 Hz), 159.58, 142.33, 142.27, 139.52, 139.00, 135.28 (4JCF = 3.10 Hz), 134.80, 131.52 (3JCF = 9.60 Hz), 130.57, 128.62, 127.54, 126.57, 124.59, 124.52, 124.24, 121.83, 121.22, 117.73, 116.80, 116.13 (2JCF = 22.70 Hz), 113.89, 86.13, 69.97, 55.27, 54.42, 43.77, 24.52; IR (KBr, ν, cm−1) 3044, 1717, 1693, 1576, 1490, 1387, 1260, 1157, 839, 754; HRMS (APCI-TOF) m/z calcd for: C33H27NO6SF, 584.1543 [M + H]+; found: 584.1515.
1′-(4-Fluorophenyl)-5′-((4-fluorophenyl)sulfonyl)-3a′-methyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3n). White solid, mp 159–161 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.98–7.95 (m, 2H), 7.74–7.71 (m, 1H), 7.39–7.37 (m, 3H), 7.30–7.27 (m, 2H), 7.18–7.16 (m, 2H), 7.09–7.04 (m, 1H), 6.80–6.76 (m, 3H), 6.75–6.72 (m, 1H), 6.56–6.54 (m, 1H), 4.08 (d, J = 10.8 Hz, 1H), 4.02 (d, J = 10.8 Hz, 1H), 2.46 (d, J = 15.2 Hz, 1H), 2.31 (d, J = 14.8 Hz, 1H), 1.23 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.76, 160.42 (1JCF = 247.00 Hz), 142.26, 142.09, 140.69, 139.06, 134.97 (5JCF = 3.20 Hz), 132.07, 131.59 (3JCF = 9.70 Hz), 129.10, 128.70, 128.54, 126.15 (4JCF = 8.80 Hz), 121.88, 121.31, 117.63, 116.83, 116.29, 116.06, 115.68 (2JCF = 23.10 Hz), 114.35, 114.10, 86.10, 69.78, 54.51, 43.84, 24.55; IR (KBr, ν, cm−1) 2926, 1716, 1683, 1540, 1495, 1374, 1262, 1179, 836, 747; HRMS (APCI-TOF) m/z calcd for: C32H24NO5SF2, 572.1343 [M + H]+; found: 572.1318.
5′-((4-Chlorophenyl)sulfonyl)-3a′-methyl-1′-phenyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3o). White solid, mp 200–201 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.90 (d, J = 8.8 Hz, 2H), 7.74 (d, J = 8.4 Hz, 1H), 7.58–7.56 (m, 2H), 7.40–7.35 (m, 4H), 7.22–7.19 (m, 2H), 7.12–7.08 (m, 1H), 7.06–7.04 (m, 1H), 6.82–6.77 (m, 3H), 6.60–6.58 (m, 1H), 4.11 (d, J = 10.8 Hz, 1H), 4.04 (d, J = 10.4 Hz, 1H), 2.50 (d, J = 14.8 Hz, 1H), 2.30 (d, J = 14.8 Hz, 1H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.05, 142.31, 142.20, 140.54, 139.98, 139.40, 137.82, 134.69, 132.61, 130.03, 129.36, 129.14, 128.72, 128.39, 127.48, 126.64, 124.29, 124.23, 121.86, 121.24, 117.86, 116.77, 86.19, 69.92, 54.62, 43.76, 24.60; IR (KBr, ν, cm−1) 2976, 1716, 1668, 1538, 1417, 1368, 1265, 1122, 885, 754; HRMS (APCI-TOF) m/z calcd for: C32H25NO5SCl, 570.1142 [M + H]+; found: 570.1158.
5′-((4-Chlorophenyl)sulfonyl)-3a′-methyl-1′-(p-tolyl)-3′,3a′-dihydro -3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3p). White solid, mp 189–191 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.89–7.87 (m, 2H), 7.74 (d, J = 8.4 Hz, 1H), 7.57–7.54 (m, 2H), 7.38–7.34 (m, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.11–7.08 (m, 4H), 6.79–6.78 (m, 3H), 6.59–6.57 (m, 1H), 4.09 (d, J = 11.2 Hz, 1H), 4.03 (d, J = 10.8 Hz, 1H), 2.47 (d, J = 14.8 Hz, 1H), 2.36 (s, 3H), 2.29 (d, J = 14.8 Hz, 1H), 1.20 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.10, 142.33, 142.21, 140.50, 139.67, 139.40, 138.25, 137.84, 134.74, 134.68, 129.99, 129.49, 129.19, 129.11, 128.61, 127.52, 126.62, 124.49, 124.22, 121.81, 121.19, 117.90, 116.74, 86.18, 69.96, 54.54, 43.68, 30.94, 24.52, 21.28; IR (KBr, ν, cm−1) 2924, 1716, 1683, 1583, 1490, 1371, 1260, 1167, 835, 757; HRMS (APCI-TOF) m/z calcd for: C33H27NO5SCl, 584.1298 [M + H]+; found: 584.1266.
5′-((4-Chlorophenyl)sulfonyl)-1′-(4-methoxyphenyl)-3a′-methyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3q). White solid, mp 198–200 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.88 (d, J = 8.8 Hz, 2H), 7.74 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.8 Hz, 2H), 7.38–7.34 (m, 1H), 7.15–7.08 (m, 4H), 6.89 (d, J = 8.8 Hz, 2H), 6.80–6.77 (m, 3H), 6.60–6.57 (m, 1H), 4.09 (d, J = 10.8 Hz, 1H), 4.05 (d, J = 11.2 Hz, 1H), 3.82 (s, 3H), 2.46 (d, J = 14.8 Hz, 1H), 2.29 (d, J = 14.8 Hz, 1H), 1.20 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.14, 159.58, 142.32, 142.23, 140.51, 139.58, 139.11, 137.83, 134.69, 130.56, 129.99, 129.12, 128.61, 127.54, 126.62, 124.56, 124.54, 124.21, 121.84, 121.22, 117.88, 116.76, 113.89, 86.15, 69.98, 55.28, 54.43, 43.66, 24.49; IR (KBr, ν, cm−1) 3056, 1717, 1684, 1559, 1436, 1373, 1260, 1175, 837, 751; HRMS (APCI-TOF) m/z calcd for: C33H27NO6SCl, 600.1248 [M + H]+; found: 600.1212.
1′-(4-Chlorophenyl)-5′-((4-chlorophenyl)sulfonyl)-3a′-methyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3r). White solid, mp 214–216 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.91–7.89 (m, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.57–7.55 (m, 2H), 7.41–7.33 (m, 3H), 7.15–7.11 (m, 3H), 7.03–7.01 (m, 1H), 6.82–6.77 (m, 3H), 6.60–6.57 (m, 1H), 4.09 (d, J = 10.8 Hz, 1H), 4.03 (d, J = 10.8 Hz, 1H), 2.50 (d, J = 14.8 Hz, 1H), 2.30 (d, J = 14.8 Hz, 1H), 1.21 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.87, 142.20, 140.64, 138.13, 137.74, 134.71, 134.57, 131.06, 130.75, 130.03, 129.14, 128.98, 128.70, 127.40, 126.69, 124.22, 123.95, 121.96, 121.39, 117.77, 116.81, 86.10, 69.83, 54.64, 43.80, 24.56; IR (KBr, ν, cm−1) 2976, 1716, 1699, 1591, 1491, 1365, 1259, 1183, 833, 771; HRMS (APCI-TOF) m/z calcd for: C32H24NO5SCl2, 604.0752 [M + H]+; found: 604.0749.
5′-((4-Bromophenyl)sulfonyl)-3a′-methyl-1′-phenyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3s). White solid, mp 205–206 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.83–7.80 (m, 2H), 7.75–7.72 (m, 3H), 7.39–7.34 (m, 4H), 7.21–7.19 (m, 2H), 7.12–7.08 (m, 1H), 7.06–7.04 (m, 1H), 6.82–6.76 (m, 3H), 6.60 (d, J = 7.6 Hz, 1H), 4.11 (d, J = 10.8 Hz, 1H), 4.03 (d, J = 11.2 Hz, 1H), 2.51 (d, J = 14.0 Hz, 1H), 2.29 (d, J = 14.8 Hz, 1H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.00, 142.31, 142.19, 140.00, 139.43, 138.41, 134.66, 132.62, 132.13, 130.06, 129.36, 129.18, 128.72, 128.39, 127.48, 126.65, 124.31, 124.22, 121.88, 121.25, 117.98, 116.77, 86.19, 69.94, 54.62, 43.73, 24.59; IR (KBr, ν, cm−1) 2977, 1718, 1652, 1570, 1491, 1367, 1264, 1168, 832, 756; HRMS (APCI-TOF) m/z calcd for: C32H25NO5SBr, 614.0637 [M + H]+; found: 614.0610.
1′-(4-Chlorophenyl)-5′-((4-chlorophenyl)sulfonyl)-3a′-methyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3t). White solid, mp 216–217 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.81–7.78 (m, 2H), 7.75–7.71 (m, 3H), 7.38–7.34 (m, 1H), 7.15–7.10 (m, 4H), 6.90–6.88 (m, 2H), 6.81–6.77 (m, 3H), 6.60 (d, J = 6.8 Hz, 1H), 4.09 (d, J = 10.8 Hz, 1H), 4.05 (d, J = 10.8 Hz, 1H), 3.82 (s, 3H), 2.47 (d, J = 14.8 Hz, 1H), 2.28 (d, J = 15.2 Hz, 1H), 1.20 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.08, 159.59, 142.32, 142.21, 139.59, 139.13, 138.42, 134.66, 132.09, 130.56, 130.01, 129.12, 128.60, 127.53, 126.62, 124.55, 124.18, 121.84, 121.21, 117.98, 116.74, 113.88, 86.15, 69.98, 55.26, 54.43, 43.62, 24.46; IR (KBr, ν, cm−1) 2926, 1717, 1683, 1575, 1490, 1368, 1247, 1168, 838, 748; HRMS (APCI-TOF) m/z calcd for: C33H28NO6SBr, 644.0742 [M + H]+; found: 644.0704.
3a′-Methyl-5′-(naphthalen-1-ylsulfonyl)-1′-phenyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3u). White solid, mp 210–211 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 8.59 (d, J = 1.6 Hz, 1H), 8.05–7.99 (m, 3H), 7.85–7.82 (m, 2H), 7.76–7.66 (m, 2H), 7.41–7.35 (m, 4H), 7.20–7.18 (m, 2H), 7.13–7.09 (m, 1H), 7.06–7.04 (m, 1H), 6.70–6.63 (m, 2H), 6.52–6.48 (m, 1H), 5.70–5.68 (m, 1H), 4.05 (d, J = 10.8 Hz, 1H), 3.95 (d, J = 10.4 Hz, 1H), 2.44–2.40 (m, 1H), 2.19 (d, J = 14.8 Hz, 1H), 1.21 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 142.19, 142.00, 140.36, 139.16, 136.09, 135.40, 134.95, 132.72, 131.84, 130.93, 129.81, 129.50, 129.41, 129.01, 128.64, 128.29, 127.94, 127.71, 127.36, 126.48, 124.44, 124.37, 122.80, 121.45, 120.98, 117.58, 116.53, 86.04, 69.90, 54.61, 43.56, 24.53; IR (KBr, ν, cm−1) 2924, 1716, 1683, 1558, 1495, 1362, 1263, 1170, 752, 669; HRMS (APCI-TOF) m/z calcd for: C36H28NO5S, 586.1688 [M + H]+; found: 586.1662.
1′-(4-Methoxyphenyl)-3a′-methyl-5′-(naphthalen-1-ylsulfonyl)-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3v). White solid, mp 174–176 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 8.59 (d, J = 1.2 Hz, 1H), 8.04–7.98 (m, 3H), 7.85–7.81 (m, 2H), 7.75–7.72 (m, 1H), 7.69–7.65 (m, 1H), 7.41–7.37 (m, 1H), 7.15–7.08 (m, 4H), 6.90–6.87 (m, 2H), 6.72–6.64 (m, 2H), 6.53–6.49 (m, 1H), 5.74–5.71 (m, 1H), 4.04 (d, J = 11.2 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H), 3.83 (s, 3H), 2.39 (d, J = 14.8 Hz, 1H), 2.18 (d, J = 14.8 Hz, 1H), 1.19 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.95, 159.53, 142.22, 142.05, 139.99, 138.88, 136.12, 135.39, 134.97, 131.84, 130.89, 130.62, 129.80, 129.47, 129.01, 128.55, 127.93, 127.69, 127.44, 126.47, 124.70, 124.35, 122.75, 121.45, 120.97, 117.62, 116.53, 113.81, 86.02, 69.96, 55.27, 54.43, 43.48, 24.43; IR (KBr, ν, cm−1) 2927, 1716, 1653, 1594, 1494, 1361, 1264, 1173, 834, 772; HRMS (APCI-TOF) m/z calcd for: C37H30NO6S, 616.1794 [M + H]+; found: 616.1761.
5′-((4-Bromophenyl)sulfonyl)-8′-fluoro-3a′-methyl-1′-(p-tolyl)-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3w). White solid, mp 225–227 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.79–7.69 (m, 5H), 7.19 (d, J = 8.0 Hz, 2H), 7.09–7.04 (m, 3H), 6.81–6.78 (m, 4H), 6.59 (d, J = 7.2 Hz, 1H), 4.07 (d, J = 10.8 Hz, 1H), 3.99 (d, J = 11.2 Hz, 1H), 2.48 (d, J = 14.8 Hz, 1H), 2.37 (s, 3H), 2.27 (d, J = 14.8 Hz, 1H), 1.21 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.66, 166.45 (1JCF = 246.80 Hz), 142.29, 141.07, 140.83, 138.79, 138.63, 138.09, 132.15, 130.69 (6JCF = 3.2 Hz), 130.03, 129.28, 128.95, 128.90, 126.46 (4JCF = 8.80 Hz), 126.09 (5JCF = 8.5 Hz), 121.88, 121.27, 117.96, 116.77, 115.58 (2JCF = 22.9 Hz), 114.31 (2JCF = 24.3 Hz), 99.98, 86.12, 69.83, 54.47, 43.60, 24.41, 21.29; IR (KBr, ν, cm−1) 2973, 1717, 1652, 1591, 1491, 1373, 1254, 1173, 868, 744; HRMS (APCI-TOF) m/z calcd for: C33H26NO5SBrF, 646.0699 [M + H]+; found: 646.0701.
8′-Chloro-3a′-methyl-1′-phenyl-5′-tosyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3x). White solid, mp 230–232 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.83 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.8 Hz, 1H), 7.40–7.37 (m, 5H), 7.33–7.30 (m, 1H), 7.20–7.18 (m, 2H), 6.98 (d, J = 2.4 Hz, 1H), 6.78–6.74 (m, 3H), 6.51–6.48 (m, 1H), 4.10 (d, J = 10.8 Hz, 1H), 4.05 (d, J = 11.6 Hz, 1H), 2.51 (s, 3H), 2.46 (d, J = 14.8 Hz, 1H), 2.30 (d, J = 14.8 Hz, 1H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.59, 145.10, 142.30, 142.17, 140.49, 138.99, 136.23, 133.50, 132.12, 132.01, 129.52, 129.20, 128.66, 128.63, 128.57, 128.49, 127.14, 125.79, 125.39, 121.66, 121.27, 117.63, 116.85, 86.05, 69.78, 54.41, 43.80, 24.53, 21.79; IR (KBr, ν, cm−1) 2970, 1717, 1683, 1594, 1493, 1373, 1284, 1174, 878, 749; HRMS (APCI-TOF) m/z calcd for: C33H27NO5SCl, 584.1298 [M + H]+; found: 584.1279.
8′-Chloro-3a′-methyl-1′-(p-tolyl)-5′-tosyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3y). White solid, mp 224–226 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.82 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.8 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.33–7.30 (m, 1H), 7.19 (d, J = 7.6 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 2.4 Hz, 1H), 6.78–6.75 (m, 3H), 6.50–6.48 (m, 1H), 4.07 (d, J = 10.8 Hz, 1H), 4.04 (d, J = 11.6 Hz, 1H), 2.51 (s, 3H), 2.44 (d, J = 14.8 Hz, 1H), 2.37 (s, 3H), 2.29 (d, J = 14.8 Hz, 1H), 1.20 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.64, 145.06, 142.34, 142.20, 140.49, 138.65, 138.54, 136.24, 133.51, 132.00, 129.51, 129.22, 129.05, 128.97, 128.55, 127.18, 126.03, 125.42, 121.64, 121.23, 117.68, 116.83, 86.05, 69.82, 54.36, 43.68, 24.42, 21.78, 21.32; IR (KBr, ν, cm−1) 2970, 1721, 1646, 1595, 1492, 1307, 1286, 1174, 810, 761; HRMS (APCI-TOF) m/z calcd for: C34H29NO5SCl, 598.1455 [M + H]+; found: 598.1429.
1′,3a′-Diphenyl-5′-tosyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3z). White solid, mp 214–215 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.87 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 1H), 7.42–7.38 (m, 5H), 7.34–7.32 (m, 2H), 7.22–7.10 (m, 7H), 7.05–7.01 (m, 1H), 6.78–6.69 (m, 3H), 6.55–6.52 (m, 1H), 4.05 (d, J = 10.8 Hz, 1H), 3.91 (d, J = 10.8 Hz, 1H), 2.80 (d, J = 14.4 Hz, 1H), 2.56–2.47 (m, 4H); 13C NMR (100 MHz, CDCl3; δ, ppm) 171.71, 144.89, 142.67, 142.35, 142.27, 139.32, 137.43, 136.63, 134.78, 132.76, 129.46, 128.96, 128.54, 128.52, 128.45, 127.69, 127.23, 126.41, 126.02, 125.36, 124.44, 121.60, 121.19, 117.58, 116.79, 86.24, 69.12, 62.69, 47.20, 21.79; IR (KBr, ν, cm−1) 2922, 1725, 1646, 1541, 1457, 1360, 1266, 1168, 944, 759; HRMS (APCI-TOF) m/z calcd for: C38H30NO5S, 612.1845 [M + H]+; found: 612.1838.
3a′,5′-Dimethyl-1′-phenyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3aa). White solid, mp 197–198 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.36–7.31 (m, 3H), 7.29–7.28 (m, 1H), 7.26–7.24 (m, 2H), 7.04 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.84–6.76 (m, 5H), 4.23 (d, J = 11.2 Hz, 1H), 4.20 (d, J = 12.0 Hz, 1H), 3.42 (s, 3H), 2.81 (d, J = 14.4 Hz, 1H), 2.63 (d, J = 14.8 Hz, 1H), 1.38 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 174.02, 142.66, 142.48, 141.23, 140.10, 137.76, 133.86, 129.74, 129.49, 128.29, 127.90, 127.69, 122.52, 121.64, 120.99, 120.18, 117.92, 116.67, 115.00, 85.86, 70.13, 51.49, 44.06, 30.06, 26.86; IR (KBr, ν, cm−1) 2969, 1772, 1637, 1540, 1452, 1376, 1252, 1186, 941, 754; HRMS (APCI-TOF) m/z calcd for: C27H24NO3, 410.1756 [M + H]+; found: 410.1763.
1′-(4-Chlorophenyl)-3a′,5′-dimethyl-3′,3a′-dihydro-3H-spiro[benzo[b][1,4]dioxine-2,2′-cyclopenta[c]quinolin]-4′(5′H)-one (3bb). White solid, mp 193–194 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.32–7.26 (m, 3H), 7.19 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.85–6.81 (m, 2H), 6.79–6.75 (m, 3H), 4.22 (d, J = 10.8 Hz, 1H), 4.18 (d, J = 11.2 Hz, 1H), 3.42 (s, 3H), 2.80 (d, J = 15.2 Hz, 1H), 2.61 (d, J = 14.8 Hz, 1H), 1.37 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 173.84, 142.54, 142.40, 141.96, 140.13, 136.50, 134.02, 132.36, 131.19, 129.76, 128.60, 127.65, 122.63, 121.76, 121.14, 119.84, 117.81, 116.73, 115.13, 85.78, 70.10, 51.54, 44.13, 30.07, 26.79; IR (KBr, ν, cm−1) 2973, 1717, 1617, 1541, 1458, 1385, 1274, 1147, 938, 763; HRMS (APCI-TOF) m/z calcd for: C27H23NO3Cl, 444.1366 [M + H]+; found: 444.1352.
5-((4-Chlorophenyl)sulfonyl)-3a-methyl-1-phenyl-3,3a-dihydro spiro[cyclopenta[c]quinoline-2,1′-cyclopentan]-4(5H)-one (5a). White solid, mp 149–151 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.91 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.38–7.34 (m, 3H), 7.23 (d, J = 8.0 Hz, 1H), 7.08–7.06 (m, 2H), 7.00–6.96 (m, 1H), 6.78 (d, J = 7.6 Hz, 1H), 2.20 (d, J = 13.6 Hz, 1H), 1.87 (d, J = 13.6 Hz, 1H), 1.84–1.81 (m, 1H), 1.63–1.56 (m, 3H), 1.53–1.47 (m, 1H), 1.43–1.39 (m, 1H), 1.32–1.24 (m, 1H), 1.17 (s, 3H), 0.87–0.82 (m, 1H); 13C NMR (100 MHz, CDCl3; δ, ppm) 176.22, 147.60, 140.36, 138.17, 135.40, 134.49, 132.44, 129.98, 129.28, 128.91, 128.30, 127.58, 127.39, 127.26, 126.32, 125.82, 123.88, 59.44, 55.08, 48.61, 38.35, 38.15, 24.60, 24.26, 23.62; IR (KBr, ν, cm−1) 2961, 1718, 1595, 1496, 1396, 1282, 1181, 1099, 827, 773; HRMS (APCI-TOF) m/z calcd for: C29H27NO3SCl, 504.1400 [M + H]+; found: 504.1395.
3a,5-Dimethyl-1-phenyl-3,3a-dihydrospiro[cyclopenta[c]quinoline-2,1′-cyclopentan]-4(5H)-one (5b). White solid, mp 152–154 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.36–7.31 (m, 3H), 7.17–7.13 (m, 3H), 6.98 (d, J = 8.4 Hz, 1H), 6.76 (d, J = 6.8 Hz, 1H), 6.71–6.68 (m, 1H), 3.40 (s, 3H), 2.45 (d, J = 13.2 Hz, 1H), 2.15 (d, J = 13.2 Hz, 1H), 1.96–1.87 (m, 1H), 1.81–1.72 (m, 2H), 1.72–1.58 (m, 2H), 1.53–1.37 (m, 2H), 1.34 (s, 3H), 1.32–1.19 (m, 1H); 13C NMR (100 MHz, CDCl3; δ, ppm) 175.84, 146.04, 139.77, 136.89, 133.96, 129.43, 128.30, 127.92, 127.44, 127.11, 122.23, 121.63, 114.74, 58.80, 52.04, 48.86, 39.00, 38.44, 29.94, 26.53, 24.25, 23.96; IR (KBr, ν, cm−1) 2955, 1684, 1597, 1472, 1374, 1289, 1162, 1098, 838, 785; HRMS (APCI-TOF) m/z calcd for: C24H26NO, 344.2014 [M + H]+; found: 334.2019.
5′-((4-Chlorophenyl)sulfonyl)-3a′-methyl-1′-phenyl-3′,3a′-dihydro spiro[cyclohexane-1,2′-cyclopenta[c]quinolin]-4′(5′H)-one (5c). White solid, mp 195–197 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.91 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.38–7.36 (m, 3H), 7.23 (d, J = 8.0 Hz, 1H), 7.02–6.96 (m, 3H), 6.72 (d, J = 7.6 Hz, 1H), 2.36 (d, J = 14.0 Hz, 1H), 1.89 (d, J = 14.0 Hz, 1H), 1.64–1.60 (m, 1H), 1.56–1.51 (m, 3H), 1.43–1.34 (m, 2H), 1.26–1.22 (m, 1H), 1.15 (s, 3H), 1.02–0.95 (m, 1H), 0.92–0.84 (m, 1H), 0.50 (d, J = 12.4 Hz, 1H); 13C NMR (100 MHz, CDCl3; δ, ppm) 176.03, 150.35, 140.36, 137.98, 135.36, 134.41, 131.68, 130.15, 129.31, 128.83, 128.16, 127.51, 127.32, 127.18, 126.32, 126.03, 123.96, 54.89, 52.93, 43.51, 36.19, 36.14, 25.23, 25.13, 23.06, 22.36; IR (KBr, ν, cm−1) 2966, 1717, 1595, 1494, 1396, 1294, 1181, 1020, 828, 793; HRMS (APCI-TOF) m/z calcd for: C30H29NO3SCl, 518.1557 [M + H]+; found: 518.1555.
3a′,5′-Dimethyl-1′-phenyl-3′,3a′-dihydrospiro[cyclohexane-1,2′-cyclopenta[c]quinolin]-4′(5′H)-one (5d). White solid, mp 148–150 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.36–7.32 (m, 3H), 7.16–7.09 (m, 3H), 6.98 (d, J = 8.0 Hz, 1H), 6.69 (d, J = 4.4 Hz, 2H), 3.40 (s, 3H), 2.46 (d, J = 14.0 Hz, 1H), 2.29 (d, J = 14.0 Hz, 1H), 1.72–1.67 (m, 3H), 1.61–1.55 (m, 2H), 1.54–1.50 (m, 1H), 1.41–1.39 (m, 1H), 1.32 (s, 3H), 1.16–1.09 (m, 1H), 0.98–0.94 (m, 1H), 0.89–0.84 (m, 1H); 13C NMR (100 MHz, CDCl3; δ, ppm) 176.01, 148.80, 139.81, 136.87, 133.20, 129.53, 128.23, 127.91, 127.55, 127.10, 122.26, 121.83, 114.73, 52.21, 51.89, 43.56, 37.64, 35.87, 30.00, 27.33, 25.42, 23.50, 22.38; IR (KBr, ν, cm−1) 2922, 1674, 1598, 1459, 1368, 1268, 1105, 1047, 914, 773; HRMS (APCI-TOF) m/z calcd for: C25H28NO, 358.2171 [M + H]+; found: 358.2174.
5′-((4-Chlorophenyl)sulfonyl)-3a′,4-dimethyl-1′-phenyl-3′,3a′-dihydrospiro[cyclohexane-1,2′-cyclopenta[c]quinolin]-4′(5′H)-one (5e, major). White solid, mp 168–170 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.90 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.38–7.35 (m, 4H), 7.06–7.02 (m, 3H), 6.71 (d, J = 7.6 Hz, 1H), 2.32 (d, J = 14.0 Hz, 1H), 1.91 (d, J = 14.0 Hz, 1H), 1.65–1.51 (m, 4H), 1.37–1.24 (m, 4H), 1.15 (s, 3H), 0.81 (d, J = 5.2 Hz, 1H), 0.71 (d, J = 7.2 Hz, 3H).

13C NMR (100 MHz, CDCl3; δ, ppm) 176.10, 150.42, 140.36, 137.98, 135.52, 134.42, 131.71, 131.15, 130.13, 129.30, 128.84, 128.23, 127.51, 127.38, 127.18, 126.32, 126.02, 123.95, 54.80, 53.02, 43.68, 36.11, 28.45, 27.74, 25.87, 25.20, 17.07. IR (KBr, ν, cm−1) 2958, 1717, 1593, 1488, 1372, 1263, 1132, 1042, 858, 773; HRMS (APCI-TOF) m/z calcd for: C31H31NO3SCl, 532.1713 [M + H]+; found: 532.1717.

5′-((4-Chlorophenyl)sulfonyl)-3a′-methyl-1′-phenyl-3′,3a′-dihydro spiro[cyclobutane-1,2′-cyclopenta[c]quinolin]-4′(5′H)-one (5f). White solid, mp 149–151 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.92 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.44–7.38 (m, 3H), 7.24–7.19 (m, 3H), 7.00–6.96 (m, 1H), 6.82 (d, J = 7.6 Hz, 1H), 2.51–2.44 (m, 1H), 2.35 (d, J = 13.6 Hz, 1H), 2.29 (d, J = 13.6 Hz, 1H), 2.12–2.05 (m, 1H), 1.96–1.80 (m, 2H), 1.55–1.50 (m, 2H), 1.14 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 176.16, 146.85, 140.35, 138.24, 135.64, 134.72, 132.42, 129.92, 128.96, 128.85, 128.55, 127.75, 127.47, 127.41, 126.24, 125.40, 123.72, 55.08, 54.55, 49.83, 34.32, 31.93, 23.94, 16.52; IR (KBr, ν, cm−1) 2948, 1721, 1599, 1476, 1371, 1284, 1182, 1114, 827, 795; HRMS (APCI-TOF) m/z calcd for: C28H26NO3SCl, 490.1244 [M + H]+; found: 490.1241.
3a′,5′-Dimethyl-1′-phenyl-3′,3a′-dihydrospiro[cyclobutane-1,2′-cyclopenta[c]quinolin]-4′(5′H)-one (5g). White solid, mp 158–160 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.42–7.34 (m, 3H), 7.24 (d, J = 7.2 Hz, 2H), 7.17–7.13 (m, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 7.6 Hz, 1H), 6.72–6.69 (m, 1H), 3.39 (s, 3H), 2.60 (d, J = 13.2 Hz, 1H), 2.55 (d, J = 8.0 Hz, 1H), 2.53–2.47 (m, 1H), 2.25–2.18 (m, 1H), 2.11–2.04 (m, 1H), 1.96–1.89 (m, 1H), 1.82–1.75 (m, 1H), 1.59–1.51 (m, 1H), 1.28 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 175.49, 145.50, 139.96, 137.10, 134.01, 129.00, 128.53, 128.08, 127.41, 127.25, 122.24, 121.28, 114.81, 54.15, 51.96, 50.20, 35.05, 31.89, 29.84, 25.77, 16.72; IR (KBr, ν, cm−1) 2969, 1668, 1595, 1459, 1369, 1284, 1117, 1097, 920, 758; HRMS (APCI-TOF) m/z calcd for: C23H24NO, 330.1858 [M + H]+; found: 330.1860.
5-((4-Chlorophenyl)sulfonyl)-2,2-diethyl-3a-methyl-1-phenyl-3,3a-dihydro-2H-cyclopenta[c]quinolin-4(5H)-onen (5h). White solid, mp 149–151 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.93 (d, J = 8.8 Hz, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.33–7.32 (m, 3H), 7.27–7.23 (m, 1H), 7.05–7.03 (m, 2H), 7.00–6.96 (m, 1H), 6.70–6.68 (m, 1H), 2.45 (d, J = 14.8 Hz, 1H), 1.67 (d, J = 14.8 Hz, 1H), 1.63–1.60 (m, 1H), 1.55–1.50 (m, 1H), 1.13 (s, 3H), 1.10–1.06 (m, 1H), 1.02–0.99 (m, 3H), 0.94–0.87 (m, 1H), 0.16–0.12 (m, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 175.33, 145.79, 140.43, 137.93, 135.36, 134.66, 134.36, 130.53, 129.05, 128.80, 128.38, 127.63, 127.58, 127.22, 126.22, 126.09, 123.91, 57.54, 54.76, 39.82, 31.94, 31.28, 24.50, 9.92, 8.11; IR (KBr, ν, cm−1) 2970, 1719, 1584, 1478, 1374, 1297, 1186, 1091, 835, 790; HRMS (APCI-TOF) m/z calcd for: C29H29NO3SCl, 506.1557 [M + H]+; found: 506.1555.
2,2-Diethyl-3a,5-dimethyl-1-phenyl-3,3a-dihydro-2H-cyclopenta[c]quinolin-4(5H)-one (5i). White solid, mp 153–155 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.31–7.28 (m, 3H), 7.18–7.14 (m, 1H), 7.10–7.08 (m, 2H), 6.99 (d, J = 8.0 Hz, 1H), 6.73–6.65 (m, 2H), 3.42 (s, 3H), 2.73 (d, J = 14.8 Hz, 1H), 1.87 (d, J = 14.8 Hz, 1H), 1.67–1.62 (m, 2H), 1.34–1.29 (m, 1H), 1.27 (s, 3H), 1.23–1.16 (m, 1H), 1.10–1.06 (m, 3H), 0.75–0.72 (m, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 175.74, 145.25, 139.75, 136.55, 135.48, 129.28, 128.21, 127.78, 127.65, 127.07, 122.33, 122.10, 114.58, 56.73, 52.01, 39.90, 31.44, 31.39, 30.14, 26.40, 10.22, 8.74, 1.04; IR (KBr, ν, cm−1) 2940, 1670, 1589, 1464, 1379, 1270, 1135, 1047, 870, 775; HRMS (APCI-TOF) m/z calcd for: C24H28NO, 346.2171 [M + H]+; found: 346.2172.
5-((4-Chlorophenyl)sulfonyl)-2,2,3a-trimethyl-1-phenyl-3,3a-dihydro-2H-cyclopenta[c]quinolin-4(5H)-one (5j). White solid, mp 157–160 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.91 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.38–7.34 (m, 3H), 7.25–7.23 (m, 1H), 7.08–7.05 (m, 2H), 7.01–7.00 (m, 1H), 6.77 (d, J = 7.6 Hz, 1H), 2.29 (d, J = 13.6 Hz, 1H), 1.86 (d, J = 14.0 Hz, 1H), 1.28 (s, 3H), 1.17 (s, 3H), 0.67 (s, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 176.02, 149.72, 140.36, 138.14, 135.31, 134.61, 131.38, 130.69, 130.00, 128.91, 128.89, 128.33, 127.76, 127.63, 127.42, 127.32, 126.35, 123.97, 54.80, 49.24, 48.53, 29.16, 28.59, 24.55; IR (KBr, ν, cm−1) 2954, 1717, 1583, 1478, 1397, 1298, 1186, 1092, 833, 759; HRMS (APCI-TOF) m/z calcd for: C27H25NO3SCl, 478.1244 [M + H]+; found: 478.1243.
2,2,3a,5-Tetramethyl-1-phenyl-3,3a-dihydro-2H-cyclopenta[c]quinolin-4(5H)-one (5k). White solid, mp 147–149 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.34–7.31 (m, 3H), 7.18–7.12 (m, 4H), 6.74–6.70 (m, 2H), 3.40 (s, 3H), 2.57 (d, J = 13.6 Hz, 1H), 2.08 (d, J = 13.6 Hz, 1H), 1.39 (s, 3H), 1.34 (s, 3H), 0.97 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.85, 148.17, 139.88, 136.75, 132.83, 129.11, 129.05, 128.31, 127.95, 127.51, 127.11, 122.23, 121.69, 114.73, 51.78, 49.53, 47.81, 29.97, 29.61, 29.21, 26.36; IR (KBr, ν, cm−1) 2938, 1684, 1592, 1457, 1399, 1268, 1104, 1032, 867, 778; HRMS (APCI-TOF) m/z calcd for: C22H24NO, 318.1858 [M + H]+; found: 318.1850.
5-((4-Chlorophenyl)sulfonyl)-2-ethyl-2,3a-dimethyl-1-phenyl-3,3a-dihydro-2H-cyclopenta[c]quinolin-4(5H)-one (5l, major). White solid, mp 147–149 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.93–7.90 (m, 4H), 7.51–7.46 (m, 4H), 7.03–6.96 (m, 4H), 6.70 (d, J = 7.2 Hz, 1H), 2.24 (d, J = 14.4 Hz, 1H), 1.90 (d, J = 14.4 Hz, 1H), 1.52–1.49 (m, 2H), 1.33 (s, 3H), 1.17 (s, 3H), 0.95–0.92 (m, 3H); 13C NMR (100 MHz, CDCl3; δ, ppm) 175.75, 148.29, 140.41, 137.97, 135.52, 134.71, 132.51, 130.28, 129.12, 128.86, 128.39, 127.64, 127.51, 127.27, 126.37, 126.27, 124.03, 54.76, 52.45, 44.89, 32.36, 28.41, 25.09, 8.45; IR (KBr, ν, cm−1) 2966, 1721, 1582, 1478, 1398, 1262, 1187, 1036, 836, 798; HRMS (APCI-TOF) m/z calcd for: C28H27NO3SCl, 492.1400 [M + H]+; found: 492.1397.
2-Ethyl-2,3a,5-trimethyl-1-phenyl-3,3a-dihydro-2H-cyclopenta[c]quinolin-4(5H)-one (5m, major). White solid; mp 157–159 °C; 1H NMR (400 MHz, CDCl3; δ, ppm) 7.33–7.29 (m, 3H), 7.17–7.12 (m, 3H), 6.73–6.69 (m, 3H), 3.41 (s, 3H), 2.44 (d, J = 14.0 Hz, 1H), 2.18 (d, J = 14.0 Hz, 1H), 1.65–1.61 (m, 2H), 1.30 (s, 3H), 1.04–1.00 (m, 3H), 0.94 (s, 3H); 13C NMR (101 MHz, CDCl3; δ, ppm) 175.95, 148.27, 139.77, 136.63, 133.37, 129.38, 128.18, 127.87, 127.51, 127.07, 122.20, 122.18, 114.64, 51.87, 51.84, 44.03, 32.55, 30.05, 26.89, 26.34, 9.90; IR (KBr, ν, cm−1) 2928, 1684, 1593, 1473, 1387, 1273, 1100, 1057, 858, 765; HRMS (APCI-TOF) m/z calcd for: C23H26NO, 332.2014 [M + H]+; found: 332.2010.

Acknowledgements

We are grateful for financial support from the NSFC (No 21602087), PAPD of Jiangsu Higher Education Institutions, the Outstanding Youth Fund of JSNU (YQ2015003), NSF of Jiangsu Province (BK20151163 and BK20160212), the Qing Lan Project and NSF of Jiangsu Education Committee (15KJB150006), and the Graduate Education Innovation Project of Jiangsu Province (No. KYZZ16_0466).

Notes and references

  1. (a) S. F. Martin, Tetrahedron, 1980, 36, 419 CrossRef CAS; (b) K. Fuji, Chem. Rev., 1993, 93, 2037 CrossRef CAS; (c) E. J. Corey and A. Guzman-Perez, Angew. Chem., Int. Ed., 1998, 37, 388 CrossRef; (d) J. Christoffers and A. Mann, Angew. Chem., Int. Ed., 2001, 40, 4591 CrossRef CAS; (e) J. Christoffers and A. Baro, Angew. Chem., Int. Ed., 2003, 42, 1688 CrossRef CAS; (f) J. Christoffers and A. Baro, Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis, Wiley-VCH, Weinheim, 2005 CrossRef; (g) A. Steven and L. E. Overman, Angew. Chem., Int. Ed., 2007, 46, 5488 CrossRef CAS; (h) P. G. Cozzi, R. Hilgraf and N. Zimmermann, Eur. J. Org. Chem., 2007, 5969 CrossRef CAS; (i) M. Shimizu, Angew. Chem., Int. Ed., 2011, 50, 5998 CrossRef CAS.
  2. R. Long, J. Huang, J. Gong and Z. Yang, Nat. Prod. Rep., 2015, 32, 1584 RSC.
  3. For selected recent reviews, see: (a) A. J. Pihko and A. M. P. Koskinen, Tetrahedron, 2005, 61, 8769 CrossRef CAS; (b) A. Steven and L. A. Overman, Angew. Chem., Int. Ed., 2007, 46, 5488 CrossRef CAS; (c) J. Kim and M. Movassaghi, Chem. Soc. Rev., 2009, 38, 3035 RSC; (d) Z. W. Zuo and D. W. Ma, Isr. J. Chem., 2011, 51, 434 CrossRef CAS.
  4. For selected examples, see: (a) E. Richmond, N. Duguet, A. M. Z. Slawin, T. Lébl and A. D. Smith, Org. Lett., 2012, 14, 2762 CrossRef CAS; (b) M. J. Riveira, A. La-Venia and M. P. Mischne, J. Org. Chem., 2016, 81, 7977 CrossRef CAS; (c) S. E. Steinhardt and C. D. Vanderwal, J. Am. Chem. Soc., 2009, 131, 7546 CrossRef CAS; (d) A. S. Marques, V. Coeffard, I. Chataigner, G. Vincent and X. Moreau, Org. Lett., 2016, 18, 5296 CrossRef CAS; (e) Q. Gao, W. J. Hao, F. Liu, S.-J. Tu, S.-L. Wang, G. Li and B. Jiang, Chem. Commun., 2016, 52, 900 RSC.
  5. For selected examples, see: (a) N. Vignola and B. List, J. Am. Chem. Soc., 2004, 126, 450 CrossRef CAS; (b) S. P. Marsden and R. Newton, J. Am. Chem. Soc., 2007, 129, 12600 CrossRef CAS; (c) T. A. Moss, D. R. Fenwick and D. J. Dixon, J. Am. Chem. Soc., 2008, 130, 10076 CrossRef CAS; (d) M. S. Manna and S. Mukherjee, J. Am. Chem. Soc., 2015, 137, 130 CrossRef CAS; (e) X. Yang, D. Nath, J. Morse, C. Ogle, E. Yurtoglu, R. Altundas and F. Fleming, J. Org. Chem., 2016, 81, 4098 CrossRef CAS; (f) R. A. Craig II, S. A. Loskot, J. T. Mohr, D. C. Behenna, A. M. Harned and B. M. Stoltz, Org. Lett., 2015, 17, 5160 CrossRef.
  6. For selected examples, see: (a) X. J. Wei, D.-T. Yang, L. Wang, T. Song, L.-Z. Wu and Q. Liu, Org. Lett., 2013, 15, 6054 CrossRef CAS; (b) S. Jayan and P. B. Jones, J. Nat. Prod., 2015, 78, 1434 CrossRef CAS; (c) M. D. Karkas, J. A. Porco Jr and C. R. J. Stephenson, Chem. Rev., 2016, 116, 9683 CrossRef CAS; (d) N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075 CrossRef CAS; (e) G. Dagousset, A. Carboni, E. Magnier and G. Masson, Org. Lett., 2014, 16, 4340 CrossRef CAS.
  7. For selected examples, see: (a) S. Jaegli, J. Dufour, H.-L. Wei, T. Piou, X.-H. Duan, J. P. Vors, L. Neuville and J. Zhu, Org. Lett., 2010, 12, 4498 CrossRef CAS PubMed; (b) H.-L. Wei, T. Piou, J. Dufour, L. Neuville and J. Zhu, Org. Lett., 2011, 13, 2244 CrossRef CAS PubMed; (c) T. Wu, X. Mu and G.-S. Liu, Angew. Chem., Int. Ed., 2011, 50, 12578 CrossRef CAS; (d) X. Mu, T. Wu, H.-Y. Wang, Y.-L. Guo and G.-S. Liu, J. Am. Chem. Soc., 2012, 134, 878 CrossRef CAS; (e) T. Piou, L. Neuville and J. Zhu, Angew. Chem., Int. Ed., 2012, 51, 11561 CrossRef CAS.
  8. For selected examples, see: (a) W.-T. Wei, M.-B. Zhou, J.-H. Fan, W. Liu, R.-J. Song, Y. Liu, M. Hu, P. Xie and J.-H. Li, Angew. Chem., Int. Ed., 2013, 52, 3638 CrossRef CAS; (b) M.-B. Zhou, R.-J. Song, X.-H. Ouyang, Y. Liu, W.-T. Wei, G.-B. Deng and J.-H. Li, Chem. Sci., 2013, 4, 2690 RSC; (c) M.-B. Zhou, C.-Y. Wang, R.-J. Song, Y. Liu, W.-T. Wei and J.-H. Li, Chem. Commun., 2013, 49, 10817 RSC; (d) H. Egami, R. Shimizu, S. Kawamura and M. Sodeoka, Angew. Chem., Int. Ed., 2013, 52, 4000 CrossRef CAS; (e) Y.-M. Li, M. Sun, H.-L. Wang, Q.-P. Tian and S.-D. Yang, Angew. Chem., Int. Ed., 2013, 52, 3972 CrossRef CAS; (f) Y.-L. Zhu, B. Jiang, W.-J. Hao, A.-F. Wang, J.-K. Qiu, P. Wei, D.-C. Wang, G. Li and S.-J. Tu, Chem. Commun., 2016, 52, 1907 RSC.
  9. B. Wang and Y.-Q. Tu, Acc. Chem. Res., 2011, 44, 1207 CrossRef CAS.
  10. For selected examples, see: (a) Y.-M. Li, X.-H. Wei, X.-A. Li and S.-D. Yang, Chem. Commun., 2013, 49, 11701 RSC; (b) K. Matcha, R. Narayan and A. P. Antonchick, Angew. Chem., Int. Ed., 2013, 52, 7985 CrossRef CAS; (c) Y. Meng, L. N. Guo, H. Wang and X.-H. Duan, Chem. Commun., 2013, 49, 7540 RSC; (d) Z. Li, Y. Zhang, L. Zhang and Z.-Q. Liu, Org. Lett., 2014, 16, 382 CrossRef CAS; (e) T. Shen, Y.-Z. Yuan and N. Jiao, Chem. Commun., 2014, 50, 554 RSC; (f) T. Shen, Y. Yuan, S. Song and N. Jiao, Chem. Commun., 2014, 50, 4115 RSC; (g) W. Wei, J. Wen, D. Yang, X. Liu, M. Guo, R. Dong and H. Wang, J. Org. Chem., 2014, 79, 4225 CrossRef CAS PubMed.
  11. (a) W. Kong, M. Casimiro, E. Merino and C. Nevado, J. Am. Chem. Soc., 2013, 135, 14480 CrossRef CAS PubMed; (b) W. Kong, M. Casimiro, N. Fuentes, E. Merino and C. Nevado, Angew. Chem., Int. Ed., 2013, 52, 13086 CrossRef CAS PubMed; (c) W. Kong, E. Merino and C. Nevado, Angew. Chem., Int. Ed., 2014, 53, 5078 CAS; (d) N. Fuentes, W. Kong, L. Fernandez-Sanchez, E. Merino and C. Nevado, J. Am. Chem. Soc., 2015, 137, 964 CrossRef CAS PubMed.
  12. For selected examples, see: (a) Y. Liu, J. L. Zhang, R.-J. Song and J.-H. Li, Org. Lett., 2014, 16, 5838 CrossRef CAS; (b) L. Kaminsky and D. A. Clark, Org. Lett., 2014, 16, 5450 CrossRef CAS; (c) Y. Liu, J.-L. Zhang, M.-B. Zhou, R.-J. Song and J.-H. Li, Chem. Commun., 2014, 50, 14412 RSC; (d) V. Pardo-Rodriguez, E. Bunuel, D. Collado-Sanz and D. J. Cardenas, Chem. Commun., 2012, 48, 10517 RSC; (e) K. Ota, S. I. Lee, J. M. Tang, M. Takachi, H. Nakai, T. Morimoto, H. Sakurai, K. Kataoka and N. Chatani, J. Am. Chem. Soc., 2009, 131, 15203 CrossRef CAS.
  13. (a) Y. Zhao, Y. Hu, H. Wang, X. Li and B. Wan, J. Org. Chem., 2016, 81, 4412 CrossRef CAS; (b) L. Lv and Z. Li, Org. Lett., 2016, 18, 2264 CrossRef CAS; (c) Y.-L. Zhu, D.-C. Wang, B. Jiang, W.-J. Hao, P. Wei, A.-F. Wang, J.-K. Qiu and S.-J. Tu, Org. Chem. Front., 2016, 3, 385 RSC; (d) A.-F. Wang, Y.-L. Zhu, S.-L. Wang, W.-J. Hao, G. Li, S.-J. Tu and B. Jiang, J. Org. Chem., 2016, 81, 1099 CrossRef CAS; (e) Y.-L. Zhu, B. Jiang, W.-J. Hao, J.-K. Qiu, J. Sun, D.-C. Wang, P. Wei, A.-F. Wang, G. Li and S.-J. Tu, Org. Lett., 2015, 17, 6078 CrossRef CAS; (f) Y. An, Y. Kuang and J. Wu, Org. Chem. Front., 2016, 3, 994 RSC; (g) F. Gao, C. Yang, N. Ma, G.-L. Gao, D. Li and W. Xia, Org. Lett., 2016, 18, 600 CrossRef CAS.
  14. J.-K. Qiu, B. Jiang, Y.-L. Zhu, W.-J. Hao, D.-C. Wang, J. Sun, P. Wei, S.-J. Tu and G. Li, J. Am. Chem. Soc., 2015, 137, 8928 CrossRef CAS.
  15. M. Hu, J.-H. Fan, Y. Liu, X.-H. Ouyang, R.-J. Song and J.-H. Li, Angew. Chem., Int. Ed., 2015, 54, 9577 CrossRef CAS.
  16. W.-P. Mai, J.-T. Wang, L.-R. Yang, J.-W. Yuan, Y.-M. Xiao, P. Mao and L.-B. Qu, Org. Lett., 2014, 16, 204 CrossRef CAS PubMed.
  17. For selected examples, see: (a) P. J. Moon, S. Yin and R. J. Lundgren, J. Am. Chem. Soc., 2016, 138, 13826 CrossRef CAS; (b) Z. Zuo, H. Cong, W. Li, J. Choi, G. C. Fu and D. W. C. MacMillan, J. Am. Chem. Soc., 2016, 138, 1832 CrossRef CAS; (c) Z.-J. Liu, X. Lu, G. Wang, L. Li, W. T. Jiang, Y. D. Wang, B. Xiao and Y. Fu, J. Am. Chem. Soc., 2016, 138, 9714 CrossRef CAS; (d) G. H. Lovett and B. A. Sparling, Org. Lett., 2016, 18, 3494 CrossRef CAS; (e) N. Rodriguez and L. J. Goossen, Chem. Soc. Rev., 2011, 40, 5030 RSC.
  18. (a) J. M. Anderson and J. K. Kochi, J. Am. Chem. Soc., 1970, 92, 1651 CrossRef CAS; (b) F. Hu, X. Shao, D. Zhu, L. Lu and Q. Shen, Angew. Chem., Int. Ed., 2014, 53, 6105 CrossRef CAS; (c) X.-F. Xia, S.-L. Zhu, C. Chen, H. Wang and Y.-M. Liang, J. Org. Chem., 2016, 81, 1277 CrossRef CAS; (d) X. Liu, Z. Wang, X. Cheng and C. Li, J. Am. Chem. Soc., 2012, 134, 14330 CrossRef CAS; (e) Z. Wang, L. Zhu, F. Yin, Z. Su, Z. Li and C. Li, J. Am. Chem. Soc., 2012, 134, 4258 CrossRef CAS; (f) F. Yin, Z. Wang, Z. Li and C. Li, J. Am. Chem. Soc., 2012, 134, 10401 CrossRef CAS.

Footnote

Electronic supplementary information (ESI) available. CCDC 1520684 (3a), 1520685 (5j). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ra28589a

This journal is © The Royal Society of Chemistry 2017
Click here to see how this site uses Cookies. View our privacy policy here.