Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Correction: Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation

Raul Morales-Salvador , Ángel Morales-García , Francesc Viñes and Francesc Illas *
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona, Spain. E-mail: francesc.illas@ub.edu; Fax: +34-93-402-1231; Tel: +34-93-402-1229

Received 5th September 2018 , Accepted 5th September 2018

First published on 14th September 2018


Abstract

Correction for ‘Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation’ by Raul Morales-Salvador et al., Phys. Chem. Chem. Phys., 2018, 20, 17117–17124.


The authors would like to correct errors associated with the reported PBE calculations. Due to a problem in the backup of some of the output files, the reported PBE results for the clean surfaces do not correspond to the fully relaxed structure. Once the proper energies are used, the Eads (PBE) values become on average 0.34 eV larger thus favoring adsorption. This implies that Eads (PBE-D3) values are larger than PBE ones by 0.30 eV and not 0.7–1.0 eV as reported in Phys. Chem. Chem. Phys., 2018, 20, 17117–17124. As a consequence, desorption temperatures predicted by the PBE calculations need to be corrected becoming higher.

The error found in the set of PBE results does not affect the main conclusion of the manuscript based on the more accurate PBE-D3 method indicating that 2D nitrides are potential materials for the capture and activation of CO2. Updated versions of Fig. 2 and Tables S1 and S3 are included.


image file: c8cp91852j-f1.tif
Fig. 2 (a) Calculated rates for desorption and adsorption of CO2 on Ta2N and Ti2N(0001) surfaces. On Ta2N marked points with T1T6 labels show how desorption temperature ranges, in (b), have been obtained. In (a), green, gray and blue colors correspond to adsorption rates on a single site per time unit for a CO2 partial pressure of 40, 15 × 103, and 105 Pa, respectively. Black and red lines are desorption rates per site for Eads obtained from PBE (solid) and PBE-D3 (dashed) calculations. In (b), green, gray, and blue bars belong to desorption temperature ranges for CO2 partial pressures of 40, 15 × 103, and 105 Pa, respectively.
Table 1 Adsorption energy (in eV) of CO2 molecule on MXene carbides at PBE and PBE-D3 levels on the adsorption sites described in Fig 1. Bond lengths δ(CO) and δ(MO) are given in Å, as well as the CO2 molecular angle, α(OCO), in degrees. The Bader charge analysis, ΔQ, is given in e and corresponds to charge difference between the adsorbed and isolated CO2 molecule
MXene Level E ads δ(MO) δ(CO) α(OCO) ΔQ
a ZPE corrected as above stated.
η1-CO22-CB
Cr2N PBE −0.98 2.10 (×2) 1.26 (×2) 136.8 −0.89
PBE-D3 −1.30 2.10 (×2) 1.26 (×2) 136.8 −0.90
Hf2N PBE −2.16 2.18 (×2) 1.29 (×2) 130.1 −1.47
PBE-D3 −2.29 2.18 (×2) 1.29 (×2) 129.9 −1.47
Nb2N PBE −1.42 2.24 (×2) 1.27 (×2) 132.6 −1.11
PBE-D3 −1.73 2.23 (×2) 1.27 (×2) 132.4 −1.12
Ta2N PBE −1.62 2.16 (×2) 1.28 (×2) 132.4 −1.20
PBE-D3 −1.90 2.16 (×2) 1.28 (×2) 132.4 −1.21
V2N PBE −1.39 2.11 (×2) 1.27 (×2) 134.6 −1.08
PBE-D3 −1.67 2.10 (×2) 1.27 (×2) 134.6 −1.08
Mo2N PBE −0.98 2.24 (×2) 1.26 (×2) 136.2 −1.06
PBE-D3 −1.33 2.23 (×2) 1.26 (×2) 136.2 −1.06
W2N PBE −0.76 2.22 (×2) 1.26 (×2) 136.8 −0.86
PBE-D3 −1.21 2.22 (×2) 1.26 (×2) 136.7 −0.86
η2-CO23-CMOB
Nb2N PBE −1.38 2.40;2.39 1.26;1.33 130.8 −1.35
PBE-D3 −1.69 2.39 (×2) 1.26;1.33 130.9 −1.35
V2N PBE −1.36 2.25;2.24 1.26;1.32 133.1 −1.30
PBE-D3 −1.65 2.23;2.25 1.26;1.32 133.1 −1.30
Mo2N PBE −0.68 2.36;2.36 1.26;1.30 134.7 −1.39
PBE-D3 −1.03 2.35;.2.36 1.26;1.30 134.7 −1.39
η2-CO23-CNOB
Cr2N PBE −0.88 2.22;2.18 1.25;1.31 135.0 −1.12
PBE-D3 −1.21 2.22;2.17 1.25;1.31 135.0 −1.14
Nb2N PBE −1.18 2.39;2.36 1.26;1.33 132.1 −1.34
PBE-D3 −1.50 2.39;2.36 1.26;1.33 132.2 −1.35
V2N PBE −1.21 2.26;2.21 1.26;1.32 133.9 −1.32
PBE-D3 −1.51 2.25;2.21 1.26;1.33 134.0 −1.32
η3-CO25-CMONON
Zr2N PBE −2.72 2.34;2.352.34;2.35 1.36 (×2) 116.2 −1.79
PBE-D3 −2.83 2.34;2.352.34;2.35 1.36;1.37 116.2 −1.80
Hf2N PBE −2.82 2.32;2.33 1.35;1.44 114.0 -2.02
PBE-D3 −2.97 2.22;2.33 1.35;1.44 114.0 −2.02
Ti2N PBE −2.92 2.23 (×2) 1.40;1.36 115.9 −1.86
PBE-D3 −3.13 2.23;2.192.23;2.16 1.40;1.36 115.9 −1.87
η3-CO25-CNOMOM
Ta2N PBE −1.60 2.00 (×2) 1.38 (×2) 112.8 −1.65
PBE-D3 −1.89 2.00 (×2) 1.38 (×2) 112.8 −1.65
W2N PBE −1.30 2.00 (×2) 1.37 (×2) 114.0 −1.40
PBE-D3 −1.77 2.00 (×2) 1.37 (×2) 114.0 −1.40
Ti2N PBE −2.92 2.20;2.14(×2) 1.39;1.40 115.3 −1.94
PBE-D3 −3.13 2.20;2.13(×2) 1.39;1.40 115.2 −1.94
η2-CO24-OBOB
Ta2N PBE −0.30 2.10;2.30(×2) 1.39 (×2) 106.8 −1.62
PBE-D3 −0.61 2.10;2.31(×2) 1.39 (×2) 106.8 −1.63
η3-CO24-CBOBOB
Mo2N PBE −0.98 2.22;2.282.19;2.31 1.38;1.36 111.2 −1.81
PBE-D3 −1.34 2.22;2.282.19;2.31 1.38;1.36 111.2 −1.82
Cr2N PBE −1.08 2.09;1.982.05;2.25 1.39;1.29 121.3 −1.27
PBE-D3 −1.44 2.08;1.972.05,2.25 1.39;1.29 121.3 −1.28
η3-CO24-CMOMOB
W2N PBE −2.20 2.17;2.04 1.33;1.39 116.5 −1.41
PBE-D3 −2.59 2.17;2.04 1.33;1.39 116.5 −1.41


Table 2 Desorption temperature range ([PBE]–[PBE-D3]) for CO2 partial pressure ranges for CO2 partial pressures of 40, 15 × 103, and 105 Pa, which stand for air, exhaust, and desorption situations, respectively. All temperature values are given in K
MXene Temperature range
Air Exhaust Desorption
η1-CO22-CB
Cr2N 415–548 529–704 581–776
Hf2N 946–1004 1237–1316 1373–1463
Nb2N 607–741 782–958 864–1060
Ta2N 669–784 853–1004 937–1104
V2N 594–715 765–924 844–1023
Mo2N 412–559 526–718 577–791
W2N 314–498 395–634 433–696
η2-CO23-CMOB
Nb2N 591–726 763–938 842–1037
V2N 603–730 786–952 871–1057
Mo2N 302–453 389–586 428–648
η2-CO23-CNOB
Cr2N 383–523 489–672 538–741
Nb2N 517–650 666–843 736–934
V2N 535-661 692–859 764–949
η3-CO25-CMONON
Zr2N 1150–1199 1484–1549 1639–1712
Hf2N 1138–1261 1449–1631 1591–1804
Ti2N 1239–1338 1603–1735 1772–1921
η3-CO25-CNOMOM
Ta2N 646–761 815–962 890–1053
W2N 512–697 641–877 697–956
Ti2N 1239–1339 1603–1736 1773–1922
η2-CO24-OBOB
Ta2N 152–276 191–344 205–377
η3-CO24-CBOBOB
Mo2N 408–531 515–669 563–729
Cr2N 444–579 560–734 611–803
η3-CO24-CMOMOB
W2N 872–1029 1102–1305 1205–1430


The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.


This journal is © the Owner Societies 2018
Click here to see how this site uses Cookies. View our privacy policy here.