Issue 6, 2018

Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials

Abstract

Silicon-based materials have attracted considerable interest for the development of energy storage devices because of their ease of integration with the existing silicon semiconductor technology. Herein, we have prepared siloxene sheets—a two-dimensional (2D) silicon material—and investigated their energy storage properties via fabrication of a symmetric supercapacitor (SSC) device containing 0.5 M tetraethylammonium tetrafluoroborate as the electrolyte. The formation of 2D siloxene sheets functionalized with oxygen, hydrogen, and hydroxyl groups was confirmed through X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and laser Raman mapping analyses. Cyclic voltammetric studies of the siloxene SSC device revealed the presence of pseudocapacitance in the siloxene sheets that arose from an intercalation/deintercalation phenomenon. The galvanostatic charge–discharge profiles of the device displayed sloped symmetric triangular curves with a maximum specific capacitance of 2.18 mF cm−2, high energy density of 9.82 mJ cm−2, good rate capability, and excellent cycling stability of 98% capacitance retention after 10 000 cycles. The siloxene SSC device delivered a maximum power density of 272.5 mW cm−2, which is higher than those of other silicon- and carbon-based SSCs, highlighting their potential for application in energy storage.

Graphical abstract: Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials

Supplementary files

Article information

Article type
Paper
Submitted
16 Jan 2018
Accepted
27 Mar 2018
First published
04 Apr 2018

Energy Environ. Sci., 2018,11, 1595-1602

Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials

K. Krishnamoorthy, P. Pazhamalai and S. Kim, Energy Environ. Sci., 2018, 11, 1595 DOI: 10.1039/C8EE00160J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements