Danning
Zheng
a,
Tengfei
Wang
ab,
Xinrui
Zhu
a,
Ci
Chen
a,
Tiegang
Ren
*ab,
Li
Wang
*a and
Jinglai
Zhang
*a
aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P.R. China. E-mail: rtg@henu.edu.cn; chemwangl@henu.edu.cn; zhangjinglai@henu.edu.cn
bEngineering Laboratory for Flame Retardant and Functional Materials of Henan Province, Henan University, Kaifeng, Henan 475004, P.R. China
First published on 15th December 2017
The conversion of carbon dioxide into organic products under benign conditions is still challenging. Ionic liquids are regarded as efficient and “green” catalysts from a sustainability view point. However, little attention has been focused on pyrazolium ILs although they are structural isomers of imidazolium ILs. Even fewer studies have been performed on protic pyrazolium ILs. In this work, three new protic pyrazolium ILs, HTMPzBr, HMM3PzBr, and HMM5PzBr, have been synthesized to explore their catalytic activity for the coupling reaction of carbon dioxide and propylene oxide. Both theoretical calculations and experimental characterization have verified that HTMPzBr and HMM5PzBr have similar catalytic activity, which is higher than that of HMM3PzBr. The role of various weak interactions, especially hydrogen bonds, in the reaction is elucidated by detailed theoretical analysis. The sequence of catalytic activity predicted by the Double-IL theoretical model is totally consistent with the experimental result. It is reasonable to design ionic liquids from a molecular level if a suitable theoretical model is applied, and this would provide some guidance for further experimental study.
Design, System, ApplicationIt is still challenging to develop efficient and single component catalysts for fixation of CO2 under benign conditions. In this work, three protic pyrazolium-based ILs, HTMPzBr, HMM3PzBr, and HMM5PzBr, are firstly designed with computer assistance. Next, their catalytic activity for the coupling reaction of CO2 and propylene oxide is investigated by molecular dynamics simulation and quantum chemistry. Finally, they are synthesized and the corresponding catalytic activity is determined in experiment. The experimentally determined catalytic activity is totally consistent with the theoretical estimated result. HTMPzBr and HMM5PzBr have similar catalytic activity, which is higher than that of HMM3PzBr. The lower catalytic activity of HMM3PzBr is caused by the absence of methyl substitution in the C5 position. There are three highlights that deserved to be noted: (1) the Double-IL model is more reliable for predicting the sequence of catalytic activity than the Single-IL model; (2) the role of weak interactions, especially hydrogen bonds, in the catalytic cycle is elucidated; and (3) it is reasonable to explore new ionic liquids with desired properties from computer-assisted design to experimental synthesis rather than through experimental trial and error. Our final goal is to develop new ionic liquids from the molecular level. |
A product yield over 92.1% has been achieved on the basis of 1-methylimidazole along with ZnCl2 as the synergistic catalyst.12 In 2012, Zhang employed 1-ethyl-3-methyl imidazolium bromine [EMImBr] loaded on chitosan (CS) as the catalyst leading to a product yield as high as 96%.13 In another study, the reaction conditions were greatly optimised with [BMIm]Br (1-butyl-3-methylimidazolium bromine salt) as the catalyst along with ZnCl2.14 Compared to a system with a co-catalyst or heterogeneous catalysis, the catalytic performance of a single IL is still not satisfactory. Although a series of imidazolium ILs have been used as the catalyst as early as 2001,15 studies on single IL catalysts without a co-catalyst and organic solvent are still scarce. On the basis of theoretical study,16–18 three basic steps are included in the title reaction: ring-opening of PO, CO2 insertion, and ring closure, resulting in PC and generation of the catalyst again. Among them, the ring-opening of PO is the rate-determining step, which is promoted by both electrophilic attack from the active hydrogen atom in the cation and nucleophilic attack from the anion. Inspired by this, some task-functionalized ILs, hydroxyl-functionalized imidazolium ILs, hydroxyl-functionalized ammonium,19 and carboxylic acid-functionalized imidazolium ILs,20 have been developed with better catalytic activity compared to the corresponding room temperature ILs with the same cation. This is attributed to the fact that they have a more active hydrogen atom.
According to the same analysis, ILs with better catalytic activity can be developed by combination of a suitable cation and anion. How to select a suitable cation and anion is still a perplexing problem. Currently, the development of a new catalyst basically depends on experimental trial and error, which is time-consuming and expensive. Designing ILs with desired properties from the molecular level has not been accomplished. Since the involvement of an active hydrogen atom is helpful to improve the electrophilic attack, it is easy to infer that the performance of protic ILs is better than that of inert ILs. However, less attention has been focused on protic ILs. Moreover, imidazolium ILs have better catalytic activity than other ILs, which is attributed to the distinct five-membered ring structure. As a structural isomer of imidazolium, pyrazolium ILs would also have similar properties. However, no pyrazolium ILs have been applied as a catalyst for the coupling reaction of CO2. Perhaps pyrazolium ILs, especially protic pyrazolium ILs, have a better catalytic performance than imidazolium ILs.
In this work, three protic pyrazolium ILs, 1,3,5-trimethylpyrazolium bromide (HTMPzBr), 1,3-dimethylpyrazolium bromide (HMM3PzBr), and 1,5-dimethylpyrazolium bromide (HMM5PzBr) (Fig. 1, schematic structures of the three designed protic pyrazolium ILs with the key atoms labelled), are firstly designed. Next, their catalytic activity for the fixation of CO2 is explored by both quantum chemistry and molecular dynamics (MD) methods. To ensure the reliability of the theoretical predication, the catalytic activity and mechanism are studied using not only the Single-IL model but also the Double-IL model. Finally, the designed protic pyrazolium ILs are synthesized in experiment and are employed to catalyze the reaction of PO with CO2. Recently, Wang21 successfully predicted the performance of protic 1,8-diazabicyclo[5.4.0]undec-7-ene benzimidazole [HDBU][BenIm] by means of density functional theory (DFT) calculation. This theoretical assumption has been verified by the consequent experimental result. Inspired by this, it is reasonable to believe that the theoretical result could provide helpful guidance for the development of new ILs. We expect that this work would open an express pathway to explore new ILs from the molecular level and finally to realize the efficient fixation of CO2.
Fig. 2 Potential energy profiles and schematic structures of the transition states for the ring-opening step along routes 1–3 calculated at the M06/6-311+G(2d,2p) (PCM)//B3PW91/6-31G(d,p) level. |
To decrease the steric bulk and to stabilize the Br1− anion, the other situation is considered, i.e. HTMPzBr-1 plays a major role to directly activate PO and HTMPzBr-2 plays a minor role to stabilize the Br1− anion. The H1 atom from HTMPzBr-1 activates the O1 atom of PO and the Br1− anion activates the C1 atom of PO to form TS17 (HTMPzBr, route 17) with a barrier height of 8.47 kcal mol−1 (Table S2†). The H4 atom and H7 atom are employed to stabilize the Br1− anion to form hydrogen bonds, C4–H4⋯Br1 and C7–H7⋯Br1, and both the H2 atom and H3 atom are employed to stabilize the Br2− anion to form hydrogen bonds, C3–H3⋯Br2 and N2–H2⋯Br2. The latter two hydrogen bonds are kept and the former hydrogen bonds are formed between the H5 atom (H8 atom) and Br1− anion on the other side of HTMPzBr-2. As a result, TS16 (route 16) is formed with a barrier height of 15.92 kcal mol−1 (Table S2†). The only difference between TS17 and TS16 is that different hydrogen atoms are employed to stabilize the Br1− anion. However, their barrier heights deviate by as much as 7.45 kcal mol−1 indicating that the formation of hydrogen bonds is an important aspect to determine the barrier height. Other routes are designed according to the different hydrogen bonds formed between different H atoms and Br− anions (including the Br1− and Br2− anions). The schematic structures of the transition states for the ring-opening step of routes 4–17 are plotted in Fig. S1.† The corresponding barrier heights are tabulated in Table S2.† Among all studied routes, route 17 is the most favorable with the lowest barrier height.
To further confirm the accuracy of route 17, the most feasible distance between two HTMPzBr ion pairs is evaluated by MD simulations. The distance between two protonated nitrogen atoms in two HTMPzBr ion pairs is analyzed by site–site radial distribution functions (RDFs), which are plotted in Fig. 3. The first peak is located at 7.4 Å, which is the most feasible distance between two protonated nitrogen atoms in two neighboring HTMPzBr ion pairs. The calculated distance between two protonated nitrogen atoms in TS17 is 6.4 Å, which is in good accordance with the distance determined by MD simulation. It is also confirmed that the most favorable model is reliable.
On the basis of the same pattern, the transition states for the ring-opening step are located for routes 18 and 19 catalyzed by HMM3PzBr and HMM5PzBr, respectively. The corresponding energy profiles are plotted in Fig. 4. The barrier heights decrease in the sequence of route 18 (HMM3PzBr, 10.60 kcal mol−1) → route 17 (HTMPzBr, 8.47 kcal mol−1) → route 19 (HMM5PzBr, 7.84 kcal mol−1). The difference in catalytic activity between route 17 and route 19 should be small because of their similar barrier height. In contrast, the difference between route 18 and route 17 is much larger. All three transition states have the same electrophile and the same hydrogen bonds to stabilize the Br1− and Br2− anions. However, the presence of a methyl group in the C5 position shortens the distance between H7 and the Br1− anion. As a result, a stronger hydrogen bond, C7–H7⋯Br1, is formed in TS17 and TS19, which is a vital aspect to lower the barrier heights. In contrast, the hydrogen bond C5–H7⋯Br1 in TS18 is weaker since the methyl group in the C5 position is replaced by a hydrogen atom, leading to a longer distance between the H7 atom and Br1− anion (2.96 Å). Consequently, the catalytic activity of HMM5PzBr is the best, and that of HMM3PzBr is the worst. The catalytic activity predicted by the Single-IL and Double-IL models is different. From experience, the result predicted by the Double-IL model is more reliable since more interactions are considered. The weak interactions, especially hydrogen bonds, play a critical role in determining the final catalytic activity, and so it is necessary to further explore them carefully before the final experimental synthesis.
Fig. 4 Potential energy profiles and schematic structures of the transition states for the ring-opening step along routes 17–19 calculated at the M06/6-311+G(2d,2p) (PCM)//B3PW91/6-31G(d,p) level. |
(1) |
The different types of NCI are distinguished by the sign of the λ2 eigenvalue. The bonding interactions, non-bonding interactions, and van der Waals interactions correspond to the negative, positive, and around zero λ2 value, respectively. The NCI plots of TS17, TS18, and TS19 are presented in Fig. 5 and the corresponding 3D plots are displayed below. The surfaces are colored on a continuous blue-green-red scale according to the values of sign(λ2)ρ ranging from −0.06 to 0.06 a.u. Strong attractive interactions are shown in blue; more dispersive attractive interactions are shown in green; and strong repulsive interactions are shown in red. There are two prominent sign(λ2)ρ values in the negative region for TS17, which correspond to N2–H2⋯Br2 (−0.05286 a.u.) interaction and C1–Br1 (−0.02547 a.u.) interaction, respectively. The N2–H2⋯Br2 interaction is even stronger than the C1–Br1 interaction. However, the former is far away from the reaction center. Therefore, its contribution to the ring-opening is neglected in the following discussion. The NCI plots of the other two transition states present similar features. The difference between the three transition states is that there are some green-colored regions between the H7 atom and Br1− anion in TS17 and TS19, which corresponds to the hydrogen bonds of C7–H7⋯Br1 (TS17) and C7–H7⋯Br1 (TS19), respectively. However, the green-colored regions almost disappear in TS18 indicating that the hydrogen bond C5–H7⋯Br1 is weak. The C–Br interaction of TS17 is the strongest, which is in contrast to the above-determined catalytic activity. Besides the nucleophilic activation from the anion, the electrophilic activation from the cation is the other vital impetus to promote the ring-opening of PO. However, the presence of the electrophilic interaction is not conclusive in the NCI plot.
The atoms in molecule (AIM) analysis30 is further studied to gain more insight into the nature of weak interactions, especially the electrophilic activation from the H1 atom in the three protic pyrazolium ILs. The Laplacian value of the electron density, ∇2ρ (the fifth column in Table 1), is used to characterize the nature of bonds, in which a negative ∇2ρ value refers to a covalent bond and a positive ∇2ρ value refers to an ionic bond, hydrogen bond, or van der Waals interaction. The negative values of ∇2ρ verify the formation of a covalent bond between H1 and O1, i.e. the H1 atom has transferred from N1 to O1. Furthermore, the covalent nature of the interaction between the H1 and O1 atoms could be confirmed by the ratio of G/|V|. G and V are defined by the following relationships:31
(1/4)∇2ρ = 2G + V | (2) |
H = G + V | (3) |
Transition state | X–Y⋯Z | Sign(λ2)ρ | ρ | ∇ 2 ρ | G | V | H | G/|V| |
---|---|---|---|---|---|---|---|---|
TS17 | N1–H1⋯O1 | −0.21316 | 0.21316 | −0.73977 | 0.08886 | −0.36267 | −0.27380 | 0.245 |
C1⋯Br1 | −0.02547 | 0.02547 | 0.06064 | 0.01476 | −0.01436 | 0.00040 | 1.028 | |
N–C–H4⋯Br1 | −0.01689 | 0.01689 | 0.04361 | 0.01023 | −0.00956 | 0.00067 | 1.070 | |
C7–H7⋯Br1 | −0.01130 | 0.01130 | 0.03067 | 0.00669 | −0.00571 | 0.00098 | 1.171 | |
TS18 | N1–H1⋯O1 | −0.23161 | 0.23161 | −0.90118 | 0.08568 | −0.39666 | −0.31098 | 0.216 |
C1⋯Br1 | −0.02279 | 0.02279 | 0.05696 | 0.01343 | −0.01261 | 0.00082 | 1.065 | |
N–C–H4⋯Br1 | −0.01756 | 0.01756 | 0.04459 | 0.01054 | −0.00993 | 0.00061 | 1.061 | |
H7⋯Br1 | −0.01023 | 0.01023 | 0.03244 | 0.00648 | −0.00484 | 0.00163 | 1.337 | |
TS19 | N1–H1⋯O1 | −0.23268 | 0.23268 | −0.90251 | 0.08658 | −0.39878 | −0.31220 | 0.217 |
C1⋯Br1 | −0.02336 | 0.02336 | 0.05826 | 0.01383 | −0.01309 | 0.00074 | 1.056 | |
N–C–H4⋯Br1 | −0.01682 | 0.01682 | 0.04380 | 0.01024 | −0.00953 | 0.00071 | 1.074 | |
C7–H7⋯Br1 | −0.01115 | 0.01115 | 0.03051 | 0.00663 | −0.00562 | 0.00100 | 1.178 |
Due to the experiment equipment limitations, the yield of PC is obtained by a weighing method rather than gas chromatography (GC). Additionally, a small amount of PC is retained on the inner wall of the stainless steel reactor. Correspondingly, the product yield is reduced. Therefore the yield obtained by a weighing method is lower than that obtained by GC even if the reaction is carried out under the same conditions. Although the absolute yield could not be compared with that measured by GC, the relative sequence is still reliable under the same experimental conditions.
Compared with the common ILs reported in the literature,19,32–35 the new developed protic pyrazolium ILs have two distinct advantages. One is that the synthetic condition is easy to achieve. The other one is that the catalytic activity is comparable with that of other reported ILs. Three new designed protic pyrazolium ILs are synthesized at 40 °C in a yield above 96%. The lower reaction temperature is also beneficial for suppressing the occurrence of side reactions and appearance of by-products. Moreover, the cheap raw materials along with the simple and easy separation and purification of the product are another two advantages of the new designed protic pyrazolium ILs. The reaction conditions for synthesizing some ionic liquids are listed in Table S3.† Both a higher reaction temperature and longer reaction time are required to synthesize imidazolium ILs. Higher temperatures along with harsher reaction conditions are required for the synthesis of other ILs, especially for quaternary ammonium ILs. The product yield and reaction conditions for the coupling reaction catalyzed by the aforementioned ILs are listed in Table S4.† Although the product yield of PC catalyzed by 1,5-dimethylpyrazolium bromide (HMM5PzBr) is comparable with that of 1-ethylimidazolium bromide (HEimBr), the required reaction temperature for the former is higher than that for the latter. Thus, it is difficult to determine whether the catalytic activity of HMM5PzBr is better than that of the latter. However, the catalytic performance of HMM5PzBr is better than that of 1-ethyl-3-methylimidazolium bromine (EMImBr) and triethylammonium bromide (HTeaBr). When the reaction temperature is further increased, the product yields with EMImBr and HTeaBr as catalysts would be correspondingly improved. However, it is difficult to reach 86.2%.
After the initial box was generated, 10000 energy minimization steps were performed using the steepest descent method and then allowed to equilibrate for 2 ns. The periodic boundary condition (PBC) was applied to all three dimensions of a cubic simulation box, and a 1.5 nm cut-off was applied to the non-bonding interactions. The long-range electrostatic interactions were handled with the particle mesh Ewald (PME) method associated with long-range dispersion corrections.46 These MD trajectories ran under the isothermal and isobaric ensemble at T = 298 K and P = 0.1 MPa, where the V-rescale thermostat and Parrinello–Rahman barostat were used with relaxation constants of 1.0 and 4.0 ps, respectively. The molecule was described by the General Amber Force Field (GAFF).47 Next, the system was heated temporarily up to 700 K for 1000 ps, and then the temperature was gradually lowered to 298 K to ensure ion mobility. Finally, the production simulations were carried out for 5 ns, using a time-step of 2 fs and saving a configuration every 500 time-steps.
1H NMR (400 MHz) and 13C NMR (100 MHz) spectroscopy was performed on a Bruker AVANCE III HD 400 MHz spectrometer in D2O or DMSO-d6 with TMS as the internal standard. The 1H and 13C NMR chemical shifts (δ) are given in ppm relative to TMS. 1H and 13C positive chemical shifts (δ) in ppm were downfield from TMS (DMSO-d6: δC – 39.6 ppm; residual DMSO in DMSO-d6: δH – 2.5 ppm). MS (ESI) spectra were measured using an amaZon SL spectrometer.
A series of other protic pyrazolium ILs, such as HMM3PzBr and HMM5PzBr, were synthesized by a similar procedure to that used for HTMPzBr.
The structures of the protic pyrazolium ILs were determined by NMR and MS (ESI). The data from NMR and MS (ESI) are provided as follows:
HMM3PzBr: 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.83 (d, 1H), 6.22 (d, J = 2.6 Hz, 1H), 3.85 (s, J = 2.0 Hz, 3H), 2.23 (s, 3H). 13C NMR (100 MHz, D2O) δ (ppm): 146.04, 136.48, 107.18, 37.31, 10.26. MS (ESI): m/z 97.50 [M–Br]+.
HMM5PzBr: 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.47 (d, 1H), 6.14 (d, J = 1.9 Hz, 1H), 3.75 (d, J = 2.1 Hz, 3H), 2.27 (d, J = 2.6 Hz, 3H). 13C NMR (100 MHz, D2O) δ (ppm): 146.08, 132.88, 107.70, 34.86, 10.19. MS (ESI): m/z 97.51 [M–Br]+.
HTMPzBr: 1H NMR (400 MHz, DMSO-d6) δ (ppm): 6.27 (s, J = 3.9 Hz, 1H), 3.82 (s, J = 1.9 Hz, 3H), 2.31 (s, 3H), 2.27 (s, 3H). 13C NMR (100 MHz, D2O) δ (ppm): 144.36, 137.55, 106.94, 35.53, 12.33, 10.95. MS (ESI): m/z 111.09 [M–Br]+.
Spectral characteristics of PC: 1H NMR (400 MHz, CDCl3) δ (ppm): 4.89 (m, 1H), 4.59 (d, J = 8.4 Hz, 1H), 4.05 (d, J = 8.4 Hz, 1H), 1.50 (d, J = 6.3 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ (ppm): 155.15, 73.76, 70.67, 19.03.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c7me00068e |
This journal is © The Royal Society of Chemistry 2018 |