Zhaodi Huanga,
Meixi Zhanga,
Huan Lina,
Shuo Dinga,
Bin Donga,
Di Liuc,
Hong Wang*b,
Fangna Dai*a and
Daofeng Suna
aSchool of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
bSchool of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
cSchool of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, People's Republic of China. E-mail: fndai@upc.edu.cn; wanghong@mail.buct.edu.cn
First published on 30th November 2018
Based on the 5,10,15,20-tetra(cyanophenyl)porphyrin (CNTCPP) ligand, two supermolecule complexes formulated as [Cu(CNTCPP)]·2DMF (Cu-CNTCPP) and [Zn(CNTCPP)] (Zn-CNTCPP) have been synthesized and structurally characterized by single-crystal X-ray diffraction. Cu-CNTCPP features a 0 dimensional (0D) supramoleculer structure, whereas Zn-CNTCPP is a 2D structure. With coordination unsaturated points, Cu-CNTCPP exhibits electrocatalytic activity toward oxygen evolution reaction (OER) with low potential in 1.0 M KOH, generating a current density of 10 mA cm−2 at an potential of 1.66 V vs. RHE, which means it an efficient electrocatalytic material for OER.
On the other hand, supermolecule complexes are a class of interesting materials which have been intensively investigated in diverse fields, such as luminescence, gas storage, sensing, magnetics, catalysis, and so on.17–21 The supermolecule complex structures and properties are mainly dependent on functional ligands and metal nodes.22–24 As we know, porphyrins are valuable building ligands in supermolecule complex systems; their extended square planar ligand favors the formation of ordered frameworks.25–27 Besides that, porphyrins can be metalated in their center, and could function as catalysis active centers,28–30 so porphyrins or metallporphyrin molecules have been used as active constituents for constructing a variety of supermolecule complexes.31–33 For example, reports on lithium-ion battery electrodes have been recorded based on iron-porphyrin materials.34–36 Co-based porphyrin and graphitic materials was predicted to be the OER catalyst by density functional theory (DFT) calculation.37 Analysis research of porphyrines as catalysts for electrochemical reduction of O2 and oxidation of H2O have also been reported.38 However, only a few supermolecule complexes show sufficient electrocatalytic OER activity at the high electric potential experienced during electrolysis (1.6–2.0 V vs. RHE).
Inspired by the above reports, we choose the 5,10,15,20-tetra(cyanophenyl)porphyrin (CNTCPP) ligand as organic linker for building supermolecule complexes based on the following reasons: (i) the ligand possesses delocalized π-electron system, which can provide an intense electrical conductivity;39 (ii) four cyanide bridged coordination groups and the rigid phenyl in the ligand can afford more coordination opportunities, which will leading to diverse structures;40 (iii) the electron withdrawing group of cyanide and high symmetry framework are favor for electron transferring in the ordered supermolecule structures; (iv) the central flat surface structure would help to increase the active surface area, which can ensure efficient contact between the electrolyte and active catalysts.41,42 Herein, we demonstrate two supermolecule complexes [Cu(CNTCPP)]·2DMF (Cu-CNTCPP) and [Zn(CNTCPP)] (Zn-CNTCPP) by assembling the designed CNTCPP ligand with cupper (II) or zinc(II) ions, respectively. Cu-CNTCPP are zero-dimensional (0D) complex with cupper (II) metalated in the porphyrin center, Zn-CNTCPP is a 2D structure. Although Zn-CNTCPP has been reported by Jiang and coworkers, only its structure was focused upon in their work.43 The OER properties of Cu-CNTCPP and Zn-CNTCPP have been investigated. Particularly, due to the different coordination situations, the Cu-CNTCPP materials afforded better performance than Zn-CNTCPP in 1.0 M KOH, indicating it a promising new class of non-noble catalyst for OER.
The X-ray datum of complexes were obtained on an Agilent Super nova with Cu-Kα radiation (λ = 1.54178) and MoKα (λ = 0.71073) at room temperature, respectively. The absorption corrections were decided by employing the SADABS program. The structures and hydrogen atoms were refined to utilize the SHELX-97 program 33–34 through the full-matrix least-squares by fitting on F2 and anisotropic thermal parameters, respectively. There are many disordered solvent molecules existed in the cavity of Cu-CNTCPP, which can not be achieved through the reasonable modeling. Hence, the diffuse electron was removed by the PLATON/SQUEEZE routine 35. The summary of the structure data is displayed in Tables SI1 and SI2.† Crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC: 1450485 for Cu-CNTCPP, 1449406 for Zn-CNTCPP), which can be obtained from the Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB21EZ, U.K.
Fig. 1 (a and b) The angles between the side benzene rings and the central Cu1 and Cu2-porphyrin ring. (c and d) 3D framework viewed from c axis. |
X-ray single-crystal diffraction reveals complex of Zn-CNTCPP crystallizes in the monoclinic space group P21/n, and the asymmetric unit contains one Zn2+ ion and one CNTCPP ligand. As displayed in Fig. 2a, Zn2+ is surrounded by four N atoms from one CNTCPP ligands' central porphyrin ring with the average Zn–N bond length of 2.046 Å and there are weak interactions between the two cyanide groups from two different CNTCPP ligands with the Zn2+ ions (Zn–N bond length of 2.645 Å). The CNTCPP porphyrin ring central are metallic by zinc ion to form 0D molecule, and the weak Zn–N bond between the two of cyanide groups in the CNTCPP ligands connect another two zinc(II) ions from the metallic porphyrin ring to form 2D supramolecular structure. The angles between the side benzene rings and the central Zn-porphyrin ring are 86.849°, 64.595°, 86.849°, and 64.595°, respectively (Fig. 2b). Each ligand connects three Zn(II) ions, and each Zn(II) attaches three different CNTCPP ligands, generating a 2D network (Fig. 2c). There are weak C1–H⋯N8 (3.259 Å) supramolecular hydrogen bonds between the 2D layers to connect it into 3D structures. View along b axis, there is micro-pores with dimension of 4.5 × 8.2 nm (Fig. 2d). The crystallographic data of the two complexes are summarized in Tables S1 and S2.†
To get further insight into the activity of as-synthesized Cu-CNTCPP modified electrodes toward OER, electrochemical impedance spectroscopy (EIS) analysis was also performed. Fig. 3c describe the obtained Nyquist plots of Cu-CNTCPP and the comparative catalysts, the charge-transfer resistance (Rct) at the surface of the catalysts is determined from the diameter of a semicircle at high frequencies in the Nyquist plot. Generally, Rct value varies inversely with the electrocatalytic activity. That is, smaller diameter corresponds to faster OER kinetics. The Rct values of Cu-CNTCPP (60 Ω) are much lower than the other catalysts. Thus, such a low Rct value of Cu-CNTCPP indicates that its high electrocatalytic activity for OER could be ascribed to the highly conductive Cu2+ hybrid CNTCPP ligands improving the charge transfer characteristics of Cu-CNTCPP. All the results show that the proprieties of Cu-CNTCPP are better than the comparative catalysts. As we know the electrocatalytic reaction is primarily a surface phenomenon, the axial positions of coordinated Cu2+ ions are naked, so it could offer sufficient active sites for OER. In the long-range ordered crystals of Cu-CNTCPP, CNTCPP is supposed to promote electron transport at heterogeneous surface due to its excellent electrical conductive property, which act as an ideal platform for loading Cu2+, so it showed higher catalytic activity than pure CNTCPP ligands, mixture of CNTCPP and Cu2+ and amorphous Cu-CNTCPP.
From the crystal structure of Zn-CNTCPP, there are weak interactions between the two cyanide groups from two different CNTCPP ligands with the Zn2+ ions (Zn–N bond length of 2.645 Å), so it will partially block the catalytic active sites of Zn ions, and the OER performance of it also verified our speculation. Similar with Cu-CNTCPP, we have also measured the electrocatalytic OER activity of Zn-CNTCPP and the comparative catalysts under the same conditions for comparison: ZnCl2 and CNTCPP ligand mixture by manual grinding (named mixture of CNTCPP and Zn2+), ZnCl2 and CNTCPP ligand mixture by reflux in hot DMF solution (named amorphous Zn-CNTCPP), and Zn(OH)2 by conventional precipitin reaction (named Zn(OH)2). Fig. 4a shows the polarization curves of Zn-CNTCPP and the comparative catalysts. As shown, the Zn-CNTCPP deliver a current density of 10 mA cm−2 at a potential of 1.71 V, whereas a potential as high as 1.74 V are required for CNTCPP ligand to achieve the same current density. And for mixture of CNTCPP and Zn2+, amorphous Zn-CNTCPP and Zn(OH)2, it fails to reach 10 mA cm−2 in 1.0 M KOH., the Tafel slope of the Zn-CNTCPP is 87.5 mV dec−1, compared to 272.1 mV dec−1 and 348.2 mV dec−1 for mixture of CNTCPP and Zn2+, amorphous Zn-CNTCPP, respectively (Fig. 4b). The Rct values of Zn-CNTCPP are 140 Ω (Fig. S6†). All the results show the OER properties of Zn-CNTCPP are inferior to Cu-CNTCPP, that coincides with our speculation, that is the weak interactions of Zn–N bond of central Zn(II) ions partially block the catalytic active sites of Zn ions, but the axial positions of coordinated Cu2+ ions are naked, so it offer sufficient active sites for OER and afford more convenient electrocatalytic reaction.
Fig. 4 Electrocatalytic activity of the Zn-CNTCPP for OER. (a) Polarization curves. (b) Tafel plots in 1.0 M KOH solution (5 mV s−1). (c) Comparison of coordinated and non-coordinated CNTCPP. |
The electrochemical double-layer capacitance (Cdl) was investigated under non-faradaic condition to estimate the electrochemical surface area (ECSA). The cyclic voltammograms at various scan rates of the Cu-CNTCPP, Zn-CNTCPP and CNTCPP were shown in Fig. 5a–c, according to which the Cdl was calculated. As shown in Fig. 5d, the Cdl of the Cu-CNTCPP, Zn-CNTCPP and CNTCPP are 0.531, 0.254 and 0.104 mF cm−2, suggesting that the Cu-CNTCPP may have an advantage in active surface area and active sites over others for oxygen production. Catalytic activity and stability towards OER are two valid parameters for oxygen production. In order to investigate the stability in alkaline solution of the prepared Cu-CNTCPP and Zn-CNTCPP, continuous CV was performed within the potential range of 1.45 to 1.7 V (vs. RHE) for 2000 cycles at scan rate of 50 mV s−1. As shown in Fig. 6a and c, clearly, Cu-CNTCPP exhibits slight loss compared with Zn-CNTCPP. Furthermore, the continuous electrolysis at different current density were monitored over 10 h. Moreover, taking further insight from the i–t curves obtained at 10 mA cm−2, it can be seen that the Cu-CNTCPP keeps approximately 83% compared with the Zn-CNTCPP of 54%. Notably, Cu-CNTCPP exhibits a slight variation over the entire time, indicating the outstanding stability. (Fig. 6b and d). In a word, Cu-CNTCPP with lower potential, Tafel slope and higher estimated Cdl, compared to others as depicted in Table 1, has the potential to be developed to be superior catalytic oxygen production from electrolyzed water.
Electrocatalyst | Electrolytes | η10 (mV) | Tafel slope [mV dec−1] | References |
---|---|---|---|---|
Cu-CNTCPP | 1 M KOH | 430 | 83.9 | This work |
Zn-CNTCPP | 1 M KOH | 480 | 87.5 | This work |
CNTCPP | 1 M KOH | 510 | 90.1 | This work |
Mn3O4/CoSe2 | 1 M KOH | 450 | 49 | 1 (ref. 46) |
Zn-Co-LDH | 0.1 M KOH | 460 | 101 | 2 (ref. 47) |
Fe doped Co3O4 | 1 M KOH | 370 | 60 | 3 (ref. 48) |
Fe3O4@Co9S8/rGO-2 | 1 M KOH | 400 | 54.5 | 4 (ref. 49) |
In a word, the OER performance of Zn-CNTCPP with coordination saturation is inferior to the Cu-CNTCPP with coordination unsaturation. The main reason for the difference between Cu-CNTCPP and Zn-CNTCPP in OER performance is due to the presence of weak Zn–N bonds of Zn-CNTCPP, which will partially block the catalytic active sites of Zn ions. Based on the structures and its outstanding OER performance of Cu-CNTCPP, we supposed its reaction mechanism in the OER process, as the axial direction of Cu2+ ions are unsaturated-coordinated, which provides mainly catalytically active sites used for fast dissipation of the electrons generated during OER (Scheme 1): a Cu atom with an oxidation state of 2+ serves as the center, it could be connected by solvent –OH and H2O ligands in 1.0 M KOH solution. As H2O adsorption on the surface is favorable thermodynamically, the OER directly splits H2O on a Cu2+ site to produce an adsorbed –OH. –OH then loses a proton to form an O atom, so a Cu–O− group would form (steps I and II). After the nucleophilic attack of a solvent molecule on the Cu–O− group, a hydroperoxo CuOOH group was yielded (step III). Then a superoxo (step IV) and molecular O2 (step V) could formed. Finally, O2 is evolved, and the catalyst is recovered when a H2O molecule connects to the Cu site (step VI).
In summary, complexes of Cu-CNTCPP and Zn-CNTCPP have been successfully synthesized and used as OER catalyst by utilizing of conductive CNTCPP porphyrin ligands. As an advanced OER catalyst, Cu-CNTCPP and Zn-CNTCPP catalyst exhibit a low potential of 1.66 V and 1.71 V. This designed 0D Cu-CNTCPP supramoleculer structure possesses plenty of catalytic active sites and high electrical conductivity, which can lead to better OER activity. Compared with those non-noble-metal electrocatalytic materials reported recently, Cu-CNTCPP electrode presents a quite large exchange current density and a relatively small Tafel slope, suggesting it is a promising low-cost and earth-abundant metallic electrocatalyst for OER. We anticipate that the design of the OER electrocatalyst will lead improved strategies and broad the scope for future exploration in MOFs fields.
Footnote |
† Electronic supplementary information (ESI) available: Synthesis, PXRD, TGA curves, crystal data and structure refinement for complexes, method for electrochemical measurements. CCDC 1450485 and 1449406. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8ra08338j |
This journal is © The Royal Society of Chemistry 2018 |