David A.
Pyles
,
William H.
Coldren
,
Grace M.
Eder
,
Christopher M.
Hadad
and
Psaras L.
McGrier
*
Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
First published on 25th June 2018
Although many diverse covalent organic frameworks (COFs) have been synthesised over the past decade, our fundamental understanding of their nucleation and growth during the crystallization process has progressed slowly for many systems. In this work, we report the first in-depth mechanistic investigation detailing the role of nucleophilic catalysts during the formation of two distinct benzobisoxazole (BBO)-linked COFs. The BBO-COFs were constructed by reacting 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 1,3,5-tris(4-formylphenyl)triazine (TFPT) C3-symmetric monomers with a C2-symmetric o-aminophenol substituted precursor using different nucleophiles (e.g. NaCN, NaN3, and NaSCH3). Our experimental and computational results demonstrate that the nucleophiles help initiate an oxidative dehydrogenation pathway by producing radical intermediates that are stabilized by a captodative effect. We also demonstrate that the electron deficient TFPT monomer not only aids in enhancing the crystallinity of the BBO-COFs but also participates in the delocalization of the radicals generated to help stabilize the intermediates.
Recently, we reported a cyanide-catalyzed protocol to synthesize chemically stable benzobisoxazole-linked (BBO) COFs utilizing C3-symmetric formyl- and C2-symmetric o-aminophenol-substituted organic linkers.26 Upon doing so, we discovered that the addition of cyanide enables the construction of ordered polymeric materials with high surface areas. We hypothesized that the addition of cyanide induces ring closure and the formation of a benzoxazoline intermediate that then undergoes subsequent aerobic oxidation in the presence of air to form the BBO-COF. This result is consistent with what has been reported for the cyanide-catalyzed 5-exo-tet cyclization of benzo-fused azoles,28,29 which is based on Baldwin's rules30 for ring closure. We concluded that the non-covalent interactions between the adjacent π-systems during this cyclization process were significant enough to stabilize the stacking layers upon formation of the irreversible BBO-linkage giving rise to the ordered 2D BBO-COF structures. In contrast, there are only a few synthetic routes that have been reported to construct BBO-based porous materials: (1) the annealing of silyl protected prepolymers at high temperatures,31 and (2) the direct formation of aniline Schiff base precursors followed by subsequent dehydrogenation and cyclization.32 While both methods are effective, they exclusively lead to the formation of amorphous polymer networks. Since the second synthetic route is similar to our method with the exception of adding a nucleophile to catalyze the reaction, we began to question the active role of cyanide during the cyclization process. Since BBO-COFs could be utilized for developing 2D materials for organic electronics33 and sensory applications,34 a thorough investigation into the optimal reaction conditions needed to produce ordered BBO-based polymeric systems are warranted (Scheme 1).
Recently, Wang and Yu reported a density functional theory (DFT)35 study suggesting that cyanide does not actually promote the direct cyclization of benzoxazoles but, instead, assists with the oxidative dehydrogenation process by generating a radical intermediate that is stabilized through a captodative effect.36 The captodative effect is a process by which adjacent electron donating and electron withdrawing substituents are utilized to stabilize a radical center through resonance stabilization. This concept of push–pull resonance stabilization was embraced in the field of polymer science as a method to help improve the lack of control and reactivity of 1,1-disubstituted monomers used in radical polymerizations.37 It has also emerged as an alternative method for enhancing the conductivity of organic electronic devices.38 However, mechanistic studies detailing how the captodative effect and careful selection of organic linkers can support the nucleation and growth of ordered 2D polymeric systems has yet to be reported.
In an effort to validate the likelihood of a mechanistic pathway involving the captodative effect experimentally, we were curious to determine if other nucleophiles (e.g. NaN3, NaSCH3) could be used to catalyze the formation of the BBO-COFs. We were also interested in examining what impact an electron deficient organic linker like 1,3,5-tris(4-formylphenyl)triazine (TFPT) would have on the formation and crystallization of the BBO-linked COFs. Since triazine-based monomers are known for exhibiting high electron mobilities (thanks to their electron withdrawing nature),39 we hypothesized that this feature could assist with stabilizing the radical species generated during the oxidative dehydrogenation process.
In this study, we first established the optimal cyanide-catalyzed reaction conditions for synthesizing BBO-COF 3 using TFPT and 2,5-diamino-1,4-benzenediol dihydrochloride (DABD) organic linkers.40 Afterwards, we investigated the ability of other good nucleophiles like NaN3 and NaSCH3 to initiate the formation of BBO-COF 3 and the previously synthesized BBO-COF 2. These studies were performed in conjunction with one another to determine if the electron withdrawing TFPT linker of BBO-COF 3 would exhibit any enhanced effect on the formation and crystallization of the COFs in comparison to the isostructural 1,3,5-tris(4-formylphenyl)benzene (TFPB) linker that was used to synthesize BBO-COF 2. We demonstrate that NaN3 and NaSCH3 are effective at catalyzing the formation of BBO-COFs, but NaCN is the only catalyst that promotes the stabilization of radical intermediates through the captodative effect. Interestingly, we also show that the electron withdrawing TFPT monomer not only enhances the crystallinity of BBO-COF 3, but also plays a significant role in stabilizing the radical intermediates generated during oxidative dehydrogenation. These results were validated using DFT calculations, including population and spin density analyses, along with powder X-ray diffraction (PXRD). We expect that this work will provide a rational protocol for constructing highly ordered BBO-based polymeric systems for practical applications.
BBO-COF 3 was characterized using Fourier transform infrared (FT-IR) and 13C cross-polarization magic angle spinning (CP-MAS) spectroscopic analyses. The FT-IR spectrum revealed stretching modes at 1662 (CN) and 1120 cm−1 (C–O) confirming the formation of the benzoxazole ring (Fig. S11†). The TFPT linker exhibited two intense stretches at 1515 and 1360 cm−1, which correspond to the presence of the benzene and triazine moieties (Fig. S10†). The triazine ring and BBO-linkage were also confirmed by solid-state 13C CP-MAS NMR, displaying distinct resonances at 167.7, 160.5, and 146.4 ppm (Fig. S31†).
The porosity of BBO-COF 3 was evaluated using nitrogen gas adsorption measurements at 77 K (Fig. 1).
BBO-COF 3 displays a type IV isotherm exhibiting a steep uptake at low pressure (P/P0 < 0.06) followed by a noticeable step between P/P0 = 0.06 and 0.22 which validates the mesoporosity of the material. The Brunauer–Emmett–Teller (BET) method was applied over the low-pressure region (0.01 < P/P0 < 0.22) of the isotherm to afford a surface area of 2039 m2 g−1. It is worth noting that this is the highest surface area reported to date for a benzoxazole-linked porous material.27,31,32 The total pore volume of BBO-COF 3 calculated at P/P0 = 0.989 provided a value of 1.22 cm3 g−1. The pore size distribution was estimated using nonlocal density functional theory (NLDFT) to provide an average pore size of 2.7 nm, which is close to the predicted value of 3.3 nm. In comparison, the isostructural BBO-COF 2 exhibited an average pore size of 1.8 nm. The enhanced pore size of BBO-COF 3 could be attributed to the planarity of the triazine TFPT, which allows for coplanarity between the vertex and linker units (Fig. S46 and S47†). This is in contrast to the out-of-plane twisting of the TFPB moieties, which can hinder the formation of vertically stacked eclipsed layers.
In contrast to the PXRD pattern of BBO-COF 2, BBO-COF 3 displays an enhancement in crystallinity (see Fig. S30†). We believe this enhancement is attributed to (1) the planarity of the TFPT units allowing for more efficient van der Waals interactions between the layers, and (2) the ability of the electron deficient triazine units to form donor–acceptor (DA) stacks with the adjacent TFPT aromatic rings along the c direction. Lotsch and coworkers have also observed this phenomenon for imine-linked COFs containing triazine moieties.41 Since DA interactions are often more favourable than non-covalent interactions between π-electron rich aromatic rings,42 this could also further explain why the offsets for BBO-COF 2 (15 Å) are more significant compared to BBO-COF 3 (6 Å).
To address this issue, we monitored the growth of BBO-COF 3 over time. After reacting for one day, the isolated solid provided a low surface area of 704 m2 g−1 and a pore size of 1.7 nm indicating that the reaction requires a longer reaction time (Fig. 2). The IR spectrum displayed a broad stretch at 3343 cm−1 and a sharp stretch at 1693 cm−1, which are attributed to the OH stretch from the phenolic imine-linked intermediate and the aldehyde (CO) stretch from the TFPT linker, respectively (Fig. 3). Although the IR stretches for the intermediate and starting material begin to disappear after reacting for a few additional days, the surface area increases by two orders of magnitude to 1435 m2 g−1 after day two, but then surprisingly decreases to 1295 m2 g−1 on day three. This trend is echoed in the pore size data yielding a value of 2.7 nm on day two followed by the formation of multiple smaller pores at 2.6 and 2.1 nm on day three. Since the benzoxazole bond is irreversible, we believe that the dramatic changes in the surface area and pore size when transitioning from day-one to day-three could be attributed to the formation of phenolic imine-linked polymeric networks that are generated during the dynamic imine exchange process prior to the formation of the BBO linkage.25 PXRD patterns from the isolated solids also indicate that a four-day reaction period is required to attain the crystalline BBO-COF 3 structure (Fig. S20†). Allowing the reaction to proceed beyond the four-day reaction period did not lead to an additional increase in the surface area (Fig. S21†).
Fig. 2 Nitrogen isotherms at 77 K (a) and NLDFT (b) pore size distributions for BBO-COF 3 over a four-day reaction period. |
Fig. 3 IR spectra of BBO-COF 3 highlighting the disappearance of the OH stretch from phenolic imine-linked intermediate and aldehyde stretch from the TFPT linker over a four-day reaction period. |
It is also worth noting that the BBO-linkage does not form without oxygen even under the optimal growth conditions (Fig. S6–S8 and S23–S25†).
Scheme 2 Proposed mechanism for the stepwise oxidative dehydrogenation pathway to form the BBO-linkage using NaCN as a catalyst. |
The formation of BBO-COF 2 and 3 using NaN3 and NaSCH3 as catalysts was evaluated using nitrogen gas adsorption isotherms, IR spectroscopy, and PXRD analysis (Fig. 4). Since the direct cyclization of benzoxazoles only requires ∼8.4 kcal mol−1,35 we also monitored the formation of the BBO-COFs without the addition of a nucleophile. The activated solids for BBO-COF 2 provided surface area values of 1033 and 236 m2 g−1 for NaN3 and NaSCH3, respectively, whereas the reaction without catalyst yielded a surface area of 169 m2 g−1. Interestingly, NaSCH3 and NaN3 yielded pore sizes that were closer to the predicted value than NaCN (Fig. S5†). The IR spectra for BBO-COF 2 revealed that the reaction with NaSCH3 exhibited broad OH stretches at ∼3300 cm−1 indicating that the isolated solids still contain some of the unreacted phenolic imine-linked intermediate (Fig. 4b). The PXRD data revealed that NaN3 and NaCN were the only catalysts that produced crystalline samples of BBO-COF 2 while NaSCH3 afforded an amorphous porous polymer (Fig. 4c). In contrast to BBO-COF 2, the activated solids for BBO-COF 3 yielded surface areas of 1697, 1439, and 386 m2 g−1 for NaSCH3, NaN3, and the reaction with no catalyst, respectively (Fig. 4d). The BBO-COF 3 synthesized without a catalyst contained two pores at 1.7 and 2.6 nm, while the others displayed one distinct pore size at ∼2.7 nm (Fig. S15†). NaSCH3 is the only nucleophile that exhibited an OH stretch at ∼3300 cm−1 signifying that a small portion of the polymer was not fully converted to the BBO-linkage (Fig. 4e). Surprisingly, all of the nucleophiles studied provided high quality samples of BBO-COF 3 with the lone exception being the reaction in which no catalyst was used (Fig. 4f). Although the complete formation of BBO-COF 2 and 3 seemed to vary upon the usage of NaSCH3 or NaN3, our studies suggest that NaCN is the most effective catalyst at producing crystalline BBO-COF materials. It should be noted that the reactions without catalyst generated amorphous porous polymers, and were unsuccessful at promoting the cyclization of the BBO-linkage even in the presence of oxygen. This also indicates that nucleophiles are critical for providing the sp3 hybridized α-carbon needed to initiate the stepwise oxidative dehydrogenation mechanistic pathway (Scheme 2).
Based on the experimental and computational data collected, we propose the following mechanism for the cyclization of the BBO-linkage during the nucleation process (Scheme 2). The aminophenol and formyl precursors initially undergo an imine condensation reaction to produce (A) followed by subsequent proton transfer to form the protonated imine intermediate (B). Then, cyanide attacks the imine α-carbon of (B) to generate the sp3 hybridized intermediate (C). Afterwards, triplet state oxygen moves in to abstract the hydrogen atom at the sp3 hybridized α-carbon of (C) to produce intermediate (D) and generate a hydroperoxyl radical species. Later, this hydroperoxyl radical species returns to abstract a hydrogen atom from the β-nitrogen of (D) to eliminate hydrogen peroxide and produce intermediate (E). From here, an intramolecular cyclization followed by elimination of the cyano group produces the BBO-linkage. Although the proposed mechanism does shed more light on the role of cyanide during the cyclization process, it is unclear if radical–radical interactions49 between the adjacent layers of BBO-COFs occur or assist with the nucleation and growth process.
Footnote |
† Electronic supplementary information (ESI) available: Synthetic procedures, FT-IR, solid-state 13C NMR, TGA, PXRD, SEM, optimized XYZ coordinates, vibrational frequencies, and full NPA results. See DOI: 10.1039/c8sc01683f |
This journal is © The Royal Society of Chemistry 2018 |