Yaju
Chen
a,
Rongchang
Luo
*a,
Zhi
Yang
a,
Xiantai
Zhou
b and
Hongbing
Ji
*a
aFine Chemical Industry Research Institute, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China. E-mail: luorongc@mail.sysu.edu.cn; jihb@mail.sysu.edu.cn
bSchool of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
First published on 31st October 2017
An imidazolium-based ionic liquid (IL) functionalized zinc porphyrin catalyst was successfully synthesized for the first time, and was employed as an efficient catalyst for CO2 transformation including both the chemoselective synthesis of cyclic carbonates from various epoxides and the regioselective synthesis of 5-aryl-2-oxazolidinones from N-substituted aziridines. Detailed studies demonstrated that the intramolecular cooperative effect between the coordinated zinc center (electrophile) and flexible bromine anions (nucleophile) could mediate these reactions effectively under solvent-free and mild conditions. More importantly, the IL-based catalyst could be readily recovered by solvent precipitation and reused with retention of high activity and selectivity more than ten times based on the concept of “one-phase catalytic coupling with two-phase separation”.
So far, various catalysts for this transformation have been intensively reported such as N-heterocyclic carbenes,14 ionic liquids (ILs),15,16 organic bases,17,18 alkali metal halides,19,20 metal oxides,21 metallosalen complexes,22–28 metalloporphyrins,29–36etc. Through careful analysis of the above catalytic systems, metalloporphyrins and metallosalen complexes have been well documented as highly active catalysts in comparison with traditional organocatalysts because of their designable framework and the unique conjugation properties. Based on the general character of dual activation mode in the metal-catalyzed CO2-cycloaddition reactions, either a nucleophile group (quaternary onium salt) or organic base was required for the ring opening of the epoxide and/or aziridine. However, on account of the introduction of additional co-catalysts, some obvious drawbacks such as the intricate recycling problem and the unavoidable contamination of the products in binary catalytic systems have greatly limited their industrial application. In this regard, vigorous efforts have been made to develop bifunctional single-component catalysts, which were in combination with metal active sites and nucleophile groups. For instance, in 2014, our group developed a series of novel IL-functionalized salen aluminum complexes with built-in “CO2 capture” capability and used them as highly efficient catalysts for the conversion of CO2 into cyclic carbonates.23 A more recent study reported by Jing and co-workers identified a new type of zinc porphyrin bearing quaternary ammonium halogenides, which showed high catalytic activity in this coupling reaction.37 However, in these catalytic systems, high temperature (≥100 °C) was still required to raise the catalytic performance. Thus, there is still much room for the improvement of currently available catalysts for this transformation. Recently, ILs have attracted great attention because of their applications, specifically in CO2 capture and conversion. This is mainly because their significant CO2 solubility and CO2-philic ability derive from either varying the type of cations and anions or introducing various functional groups.38 Accordingly, together with the superiority of task-specific ILs and the high activity of porphyrin complexes, our design is to strive for developing bifunctional catalysts combining the advantages of ILs and metalloporphyrins to facilitate the CO2-involved coupling reaction at relatively lower temperatures and pressures.
Herein, we reported a new bifunctional catalyst (denoted as IL-ZnTPP) synthesized by grafting quaternary imidazolium-based IL moieties onto the para position of each phenyl ring in the zinc porphyrin framework through the highly stable covalent linkage (Scheme 1). As a result of a cooperative effect between the Lewis acidic metal center (Zn) and the flexible nucleophile (Br−) in one molecule, this homogeneous IL-based catalyst possessed excellent catalytic performance for producing five-membered cyclic products from CO2 and epoxides and/or aziridines at a low catalyst loading under solvent- and additive-free conditions. It is worth noting that this new catalyst also exhibited broad substrate scope for the transformation. Moreover, considering the special solubility of IL-based catalysts and the concept of “one-phase catalysis and biphase catalyst separation”, catalyst IL-ZnTPP can be conveniently reused more than ten times with the maintenance of good catalytic activity and selectivity, showing its superior stability. Therefore, our new-prepared bifunctional catalyst might provide a promising candidate for the catalytic synthesis of five-membered heterocyclic products from CO2 under mild conditions, simultaneously resolving the inevitable problem of difficulty in recycling the homogeneous catalyst.
Scheme 1 Structure of IL-functionalized zinc porphyrin (IL-ZnTPP) and its application in the CO2 cycloaddition reaction. |
Afterwards, FT-IR, XPS and UV-vis analyses were used to further validate the structure and composition of the catalysts. In the FT-IR spectra, compared to the neat Zn-TPP, the IL-functionalized sample exhibits additional characteristic peaks at around 1160 and 619 cm−1, which are assigned to the stretching vibration of the imidazole units (Fig. 2A). These new stretching vibrations further confirmed the successful grafting of the imidazolium-based ILs onto the porphyrin framework. Meanwhile, Fig. 2C and D show the XPS spectra of the Zn-TPP and IL-ZnTPP. The N 1s spectrum of the IL-ZnTPP exhibits two distinct peaks at 398.2 and 401.7 eV, which are related to the contribution of two kinds of nitrogen bonding pairs, that is, the Zn–N bonds in the porphyrin ring and the C–N bonds in the imidazolium ring, respectively.40,41 Additionally, the absence of the value of N 1s at around 399.8 eV assigned to the pyrrolic N (–NH–) suggests that the porphyrin ring is fully metalated, which strongly supports the conclusion made by 1H NMR analysis. The Zn 2p spectrum of IL-ZnTPP shows the values of Zn 2p1/2 and Zn 2p3/2 at 1045.6 and 1022.5 eV, respectively, which is well consistent with that of the ZnTPP (1045.9 and 1022.8 eV), indicating that both the ZnTPP and IL-ZnPP had an identical metal active center and chemical environment. Therefore, these observations provide indirect proof for the successful immobilization of the imidazolium-based ILs into the zinc porphyrin framework. Furthermore, UV-vis spectroscopy was also used to investigate the Q and Soret bands of the porphyrin framework in samples. As shown in Fig. S1,†IL-TPP has absorption peaks at 422, 519, 556, 593 and 649 nm, which is consistent with tetraphenylporphyrin (429, 520, 554, 595, and 653 nm),42 whereas the sample gives new absorption peaks at 439, 570 and 613 nm after the metalation with the zinc cation. Comparing each other, a red shift of the Soret band from 422 to 439 nm can be clearly observed, demonstrating the full metalation in the porphyrin rings.43 Additionally, the decomposition profiles of the samples were monitored by thermogravimetry and differential thermogravimetric (TG-DTG) analysis under an air atmosphere. As shown in Fig. 2B, the bifunctional catalyst IL-ZnTPP can endure about 250 °C with little loss of its weight, indicating its high thermal stability.
Fig. 2 (A) FT-IR spectra of (a) Zn-TPP and (b) IL-ZnTPP. (B) TG curves of (a) Zn-TPP and (b) IL-ZnTPP. (C) N 1s and (D) Zn 2p XPS spectra of (a) Zn-TPP and (b) IL-ZnTPP. |
Entry | Catalyst | P/MPa | T/°C | t/h | Conv.b/% | Yieldb/% |
---|---|---|---|---|---|---|
a Reaction conditions: 10 mL stainless-steel autoclave, SO (1.0 mmol), catalyst (0.1 mol%). b Determined by GC with biphenyl as an internal standard. c Catalyst (0.02 mol%). d Catalyst (0.2 mol%). | ||||||
1 | — | 2 | 60 | 72 | 7 | 5 |
2 | IL-TPP | 2 | 60 | 30 | 63 | 61 |
3 | ZnTPP | 2 | 60 | 30 | 24 | 20 |
4 | IL-ZnTPP | 2 | 60 | 30 | 97 | 96 |
5c | IL-ZnTPP | 2 | 60 | 30 | 13 | 10 |
6d | IL-ZnTPP | 2 | 60 | 30 | 99 | 94 |
7 | IL-ZnTPP | 2 | 35 | 48 | 34 | 33 |
8 | IL-ZnTPP | 2 | 35 | 72 | 72 | 70 |
9 | IL-ZnTPP | 1 | 60 | 30 | 87 | 85 |
10 | IL-ZnTPP | 0.5 | 60 | 30 | 67 | 64 |
Firstly, the control experiment gave a negligible reaction product in the absence of a catalyst in spite of prolonging the reaction time to 72 h at 60 °C and 2.0 MPa (Table 1, entry 1). Next, we observed that the neat Zn-TPP could only give 24% conversion, and the metal-free IL-TPP could give a better conversion (63%), indicating that both an electrophilic metal center and a nucleophilic group play important roles in the catalytic cycle (Table 1, entries 2 and 3). As expected, the bifunctional catalyst IL-ZnTPP could smoothly catalyze the reaction to afford the corresponding product with a high yield of 96% without any additives at only a catalyst loading of 0.1 mol% under identical conditions, which was due to the dual cooperative activation of epoxide by the coordinated zinc active sites and the flexible quaternary imidazolium-based ILs at the para position of each phenyl ring (Table 1, entry 4). Additionally, the influences of different parameters including the catalyst loading, CO2 pressure and reaction temperature on the yield of this reaction were also investigated in detail. It can be seen that the catalytic activity was found to increase remarkably in the presence of a higher amount of IL-ZnTPP (Table 1, entries 4 and 5). However, when the catalyst amount was further increased to 0.2 mol% (Table 1, entry 6), the conversion of SO did not increase observably. Under the rational analysis of the results, the optimum amount of IL-ZnTPP was chosen as 0.1 mol% for the following parameter studies. From the results in entries 4, 7 and 8, it was demonstrated that the reaction temperature had a positive effect on the catalytic reaction. As mentioned above, a high yield of 96% was obtained at 60 °C. However, when the temperature was decreased to 35 °C, the yield of SC dropped dramatically, even when prolonging the reaction time to 72 h (Table 1, entries 7 and 8). Even so, this represents an encouraging result (conversion: 72%) for this reaction at such a mild temperature (35 °C). Thereafter, the CO2 pressure was also investigated in the range of 0.5 and 2.0 MPa at 60 °C. Styrene cyclic carbonate (SC) was obtained in excellent yields at the CO2 pressure of 2.0 MPa. At a relatively lower pressure (1.0 and 0.5 MPa), the conversion of SO decreased obviously to a certain extent (Table 1, entries 9 and 10). In order to ensure the higher efficiency for CO2 conversion, a CO2 pressure of 2.0 MPa was selected for further investigations.
Subsequently, owing to the insolubility of the imidazolium ILs in non-polar solvents (e.g. hexane and diethyl ether), the IL-ZnTPP could be easily precipitated from the reaction mixture by adding sufficient diethyl ether. The supernatant with the product was separated from the catalyst by simple filtration or centrifugation, and the reusability of the IL-ZnTPP was evaluated in the cycloaddition reaction of CO2 with SO at 60 °C and 2.0 MPa. As shown in Fig. 3, IL-ZnTPP could be reused up to ten times with no significant loss in conversion and selectivity. Slightly decreased yields of products for each cycle were observed, mainly as a result of the catalyst loss in the recovery process. In order to confirm the stability of our catalyst in this reaction system, leaching tests to the reaction medium were carried out by directly determining the zinc species in the supernatant through ICP-OES elemental analysis, and almost no zinc ion was detected. Moreover, the 1H NMR and FTIR spectra of the reused IL-ZnTPP were confirmed, and the structure of the catalyst showed no obvious change (Fig. S3 and S4 in the ESI†). These encouraging results might demonstrate that the IL-functionalized zinc porphyrin could be considered as a promising catalyst for efficient and repetitive conversion of CO2 and epoxides into cyclic carbonates under solvent- and additive-free conditions.
Moreover, in order to study the scope of the cycloaddition reaction, this bifunctional catalytic system was extended to a number of other representative epoxides such as propylene oxide, 1,2-epoxybutane, 1,2-epoxyhexane, 1,2-epoxydodecane, epichlorohydrin, allyl glycidyl ether and cyclohexene oxide, and the results are illustrated in Scheme 2. To our delight, most of the terminal epoxides (1a–g) can be successfully converted to the desired cyclic carbonates in good-to-excellent yields (72–98%) and high selectivities (>97%) at 60 °C and 2.0 MPa CO2 pressure in the absence of any additives. However, when the internal epoxide (1h), a very challenging substrate for this reaction, was employed, the yield of the corresponding product was only 21% even at a longer reaction time of 48 h under similar conditions, indicating that the reactivity of the substrate is strongly influenced by the steric hindrance effect.23 As a consequence, this new bifunctional catalyst exhibited broad substrate scope for the synthesis of various organic carbonates.
Entry | Catalyst | T/°C | P/MPa | Conv.b/% | Yieldb/% | Sel. (Regio)c/% |
---|---|---|---|---|---|---|
a Reaction conditions: 10 mL stainless-steel autoclave, 1-nbutyl-2-phenylaziridine (1.0 mmol), catalyst (0.1 mol%), 2 h. b Determined by GC by using naphthalene as an internal standard. c Molar ratio of 5-substituted oxazolininone to 4-substituted oxazolidinone, as determined by GC. d [BMIm]Br (0.4 mol%). e [BMIm]Br (0.4 mol%), ZnTPP (0.1 mol%). | ||||||
1 | IL-ZnTPP | 90 | 2 | 99 | 93 | 97:3 |
2 | — | 90 | 2 | 18 | 13 | 94:6 |
3d | [BMIm]Br | 90 | 2 | 37 | 30 | 97:3 |
4 | ZnTPP | 90 | 2 | 46 | 41 | 95:5 |
5e | ZnTPP/[BMIm]Br | 90 | 2 | 64 | 58 | 97:3 |
6 | IL-ZnTPP | 50 | 1 | 48 | 45 | 98:2 |
7 | IL-ZnTPP | 70 | 1 | 64 | 60 | 98:2 |
8 | IL-ZnTPP | 90 | 1 | 80 | 75 | 98:2 |
9 | IL-ZnTPP | 90 | 0.5 | 54 | 50 | 98:2 |
Furthermore, IL-ZnTPP was also employed as a bifunctional catalyst for the coupling of CO2 with various aziridines, including 1-propyl-2-phenylaziridine, 1-nbutyl-2-phenylaziridine, 1-amyl-2-phenylaziridine, 1-isobutyl-2-phenylaziridine, etc. As summarized in Scheme 3, this catalyst exhibited excellent catalytic performance for these substrates, giving >92% yields and >97:3 regioselectivities of the corresponding oxazolidinones at 90 °C and 2.0 MPa. Also, it can be observed clearly that the catalytic activity of the catalyst IL-ZnTPP decreased in tandem with the increment of the length of the alkyl chain on the nitrogen atom of aziridine (5a > 5b > 5c and 5e > 5f > 5g). Compared with the above substrates bearing a linear alkyl group, the substrate with a branched alkyl group (e.g. isobutyl) at the nitrogen atom showed a slower reaction rate with excellent regioselectivity (5a > 5d and 5e > 5h), possibly owing to the steric effect.44 Even so, the yields of desired oxazolidinones (5d and 5h) could be substantially enhanced by prolonging the reaction time. Additionally, it was found that the activity of the aziridines with an electron-donating group (methyl) in the phenyl ring was relatively lower than that of the methyl-free aziridines (5a > 5e, 5b > 5f, 5c > 5g and 5d > 5h). As a result, our bifunctional catalyst showed good efficiency and excellent regioselectivity for the synthesis of various oxazolidinones from CO2 under solvent-free conditions, and the activity was greatly influenced by the steric effect and the electronic effect resulting from the nature of the substrate itself.45
Scheme 4 Proposed mechanism for the catalytic conversion of CO2 to five-membered heterocyclic products over IL-ZnTPP. |
Next, Scheme 4B shows the cycloaddition reaction of CO2 with aziridines. According to some previous studies,34,47–49 the proposed mechanism of this transformation is similar to the above coupling of CO2 and epoxides over the Lewis acid–base bifunctional catalyst, which is illustrated in Scheme 4B, path a. However, considering the strong nucleophilicity of the nitrogen atom of aziridine, the coupling reaction occurs through another path (Scheme 4B, path b).34 Initially, the nitrogen atom of aziridine acts as a Lewis base site to activate free CO2 and a new CO2-aziridine intermediate is formed. Subsequently, this intermediate binds with the Lewis acidic zinc site of IL-ZnTPP through the oxygen atom of CO2 followed by an intramolecular nucleophilic substitution reaction mainly at the less-hindered side of the activated aziridine, affording a ring-opened intermediate. Finally, the reaction is completed though a ring closing step that gives 5-substituted oxazolidinone as the major product and regenerates the catalyst. It is worthwhile to note that extremely flexible imidazolium-based ILs at the para position of a zinc porphyrin framework are accessible to the activated epoxides or aziridines in the above two cycloaddition reactions, which could accelerate the rate-determining step, thereby promoting the kinetic behavior.
1H and 13C NMR data were collected on a Bruker Varian INOVA500NB spectrometer using TMS as an internal standard. Elemental analyses of C, H, and N were performed on a Vario EL cube instrument. FT-IR spectra of the samples were obtained under ambient conditions at a resolution of 4 cm−1 in the wave number range of 4000–400 cm−1 by using an EQUINOX 55 spectrometer. The ultra-violet-visible light (UV-vis) spectra were recorded on a Shimadzu UV-2450 spectrophotometer. Thermogravimetry and differential thermogravimetric (TG-DTG) was carried out in a NETZSCH TG 209 F3 Tarsus instrument by heating samples from 40 °C to 850 °C at a heating rate of 10 °C min−1 under an air atmosphere. X-ray photoelectron spectroscopy (XPS) analysis was carried out on an ESCALAB 250 spectrometer. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF/MS) was performed on a Bruker ultrafleXtreme MALDI TOF mass spectrometer. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was performed on an OPTIMA 8000DV (PerkinElmer). Gas chromatographic (GC) analysis was performed on a GC2010 gas chromatograph (Shimadzu) equipped with a flame ionization detector and a capillary column (Rtx-5, 30 m × 0.32 mm × 0.25 μm).
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c7se00464h |
This journal is © The Royal Society of Chemistry 2018 |