Issue 2, 2018

Highly efficient CH4 purification by LaBTB PCP-based mixed matrix membranes

Abstract

Membrane-based technology for CO2/CH4 separation has received significant interests due to its potentially lower energy consumption relative to that of conventional approaches such as cryogenic distillation and chemisorption. Engineering a new membrane material with excellent performance is a crucial step in achieving this goal. In this study, we report the facile fabrication of novel mixed-matrix membranes (MMMs) that contain a porous coordination polymer (PCP) filler (LaBTB). CO2/CH4 mixed-gas permeation measurements showed that LaBTB/6FDA–DAM polyimide exhibited reduced trade-off and plasticization effects and thus surpassed the 2008 Robeson upper-bound even under RH 70% moisture (stable CO2 permeability of 700 barrer and CO2/CH4 selectivity of 30 within 120 h). Importantly, the positive effect of LaBTB within LaBTB/6FDA–DAM for selective CO2 capture has been established by in situ IR spectroscopy. Excellent separation performance combined with their outstanding water/moisture stability suggests that LaBTB-based MMMs are promising candidates for feasible CO2/CH4 separation.

Graphical abstract: Highly efficient CH4 purification by LaBTB PCP-based mixed matrix membranes

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2017
Accepted
28 Nov 2017
First published
28 Nov 2017

J. Mater. Chem. A, 2018,6, 599-606

Highly efficient CH4 purification by LaBTB PCP-based mixed matrix membranes

Y. Hua, H. Wang, Q. Li, G. Chen, G. Liu, J. Duan and W. Jin, J. Mater. Chem. A, 2018, 6, 599 DOI: 10.1039/C7TA07261A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements