Issue 11, 2019

Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice

Abstract

Gold nanoparticles (Au NPs) are conjugated with the vascular endothelial growth factor-A165 (VEGF-A165) and (11-mercaptoundecyl)-N,N,N-trimethylammonium (11-MTA) cation to form dual-functional gold nanoparticles (11-MTA/VEGF-Au NPs) that possess antimicrobial and proangiogenic activities for wound healing in diabetic (db/db) mice. VEGF-A165 is a popular proangiogenic growth factor that stimulates multiple components in the wound-healing cascade. On the other hand, 11-MTA possesses antibacterial activity and can be bound to Au NPs easily through Au–S bonding. We have found that the surface density of VEGF-A165 plays a vital role in promoting the proliferation, migration, and tube formation of human umbilical vein endothelial cells. 11-MTA tethered on the VEGF-modified Au NPs enables the nanocomposites (i.e., 11-MTA/VEGF-Au NPs) to exhibit a strong antimicrobial activity against multidrug-resistant bacteria [methicillin-resistant S. aureus (MRSA)]. The minimal inhibition concentration of 11-MTA/VEGF-Au NPs is ∼450-fold lower than that of 11-MTA, revealing their high antibacterial efficiency. 11-MTA/VEGF-Au NPs exhibit high biocompatibility. 11-MTA/VEGF-Au NPs as dressing materials to treat MRSA-infected wounds in diabetic mice not only show strong in vivo bactericidal activities but also enhance the healing process of the formation of collagen fibers and epithelialization. Our results show that dual-functional 11-MTA/VEGF-Au NPs are promising agents for clinical applications like treating chronic wound infections.

Graphical abstract: Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice

Supplementary files

Article information

Article type
Communication
Submitted
18 May 2019
Accepted
31 Aug 2019
First published
04 Sep 2019

Biomater. Sci., 2019,7, 4482-4490

Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice

S. Wei, L. Chang, C. Huang and H. Chang, Biomater. Sci., 2019, 7, 4482 DOI: 10.1039/C9BM00772E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements