Issue 45, 2019

Ferrocenyl palladacycles derived from unsymmetrical pincer-type ligands: evidence of Pd(0) nanoparticle generation during the Suzuki–Miyaura reaction and applications in the direct arylation of thiazoles and isoxazoles

Abstract

A new family of ferrocenyl-palladacycle complexes Pd(L1)Cl (Pd1) and Pd(L2)Cl (Pd2) were synthesized and characterized by UV-visible, IR, ESI-MS, and NMR spectral studies. The molecular structures of Pd1 and Pd2 were determined by X-ray crystallographic studies. Palladacycle catalyzed Suzuki–Miyaura cross-coupling reactions were investigated utilizing the derivatives of phenylboronic acids and substituted chlorobenzenes. Mechanistic investigation authenticated the generation of Pd(0) nanoparticles during the catalytic cycle and the nanoparticles were characterized by XPS, SEM and TEM analysis. Direct C–H arylation of thiazole and isoxazole derivatives employing these ferrocenyl-palladacycle complexes was examined. The reaction model for the arylation reaction implicating the in situ generation of Pd(0) nanoparticles was proposed.

Graphical abstract: Ferrocenyl palladacycles derived from unsymmetrical pincer-type ligands: evidence of Pd(0) nanoparticle generation during the Suzuki–Miyaura reaction and applications in the direct arylation of thiazoles and isoxazoles

Supplementary files

Article information

Article type
Paper
Submitted
26 Aug 2019
Accepted
16 Oct 2019
First published
16 Oct 2019

Dalton Trans., 2019,48, 17083-17096

Ferrocenyl palladacycles derived from unsymmetrical pincer-type ligands: evidence of Pd(0) nanoparticle generation during the Suzuki–Miyaura reaction and applications in the direct arylation of thiazoles and isoxazoles

A. Maji, A. Singh, A. Mohanty, P. K. Maji and K. Ghosh, Dalton Trans., 2019, 48, 17083 DOI: 10.1039/C9DT03465J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements