Issue 12, 2019

Understanding fecal sludge drying in membrane-lined container-based toilets for developing countries with CFD modeling

Abstract

A new sanitation technology that employs a laminated hydrophobic membrane liner as an integral component of container-based sanitation (CBS) systems was recently proposed for fecal sludge (FS) drying. Previous experimental data were described with a stagnant film model but resulted in an effective diffusive length for the laminate (λ) that increased with system scale and was not a fixed property of the laminate. In this study, computational fluid dynamics (CFD) was used to determine λ for a commercial laminate (eVent® fabric) that is invariant with system scale, to verify the applicability of CFD modeling for describing drying from laminate-lined CBS containers, and to predict the performance of a laminate-lined 40 L toilet in a CBS system for five developing countries. CFD modeling described drying well for experimental systems ranging from centimeter to meter scale using a single, laminate-specific λ, since CFD modeling allowed accurate characterization of the temperature and relative humidity in the vicinity of the laminate. Using λ determined for the eVent laminate, drying of FS from a laminate-lined 40 L toilet was estimated for developing countries selected to cover a range of climatic conditions with an assumed loading rate of 7.8 L FS per day. CFD model predictions showed that the filling time of the laminate-lined 40 L drum increased from 5.1 days with no laminate to 5.3–9.4 days, depending on the location and wind conditions. These modest increases in filling time might be enhanced significantly for alternative container designs that allow more uniform airflow near the laminate enclosure.

Graphical abstract: Understanding fecal sludge drying in membrane-lined container-based toilets for developing countries with CFD modeling

  • This article is part of the themed collection: Sanitation

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2019
Accepted
11 Oct 2019
First published
16 Oct 2019

Environ. Sci.: Water Res. Technol., 2019,5, 2219-2231

Understanding fecal sludge drying in membrane-lined container-based toilets for developing countries with CFD modeling

B. Ebrazi Bakhshayesh, S. Saxena and P. T. Imhoff, Environ. Sci.: Water Res. Technol., 2019, 5, 2219 DOI: 10.1039/C9EW00583H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements