Jose M.
Perez
abc,
Wayne S.
Kontur
bc,
Manar
Alherech
bd,
Jason
Coplien
bc,
Steven D.
Karlen
bce,
Shannon S.
Stahl
bd,
Timothy J.
Donohue
bcf and
Daniel R.
Noguera
*abc
aDepartment of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA. E-mail: dnoguera@wisc.edu
bDOE Great Lakes Bioenergy Research Center, Madison, WI, USA
cWisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
dDepartment of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
eDepartment of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
fDepartment of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
First published on 27th February 2019
Lignin is an aromatic heteropolymer found in plant biomass. Depolymerization of lignin, either through biological or chemical means, invariably produces heterogenous mixtures of low molecular weight aromatic compounds. Microbes that can metabolize lignin-derived aromatics have evolved pathways that funnel these heterogeneous mixtures into a few common intermediates before opening the aromatic ring. In this work, we engineered Novosphingobium aromaticivorans DSM12444, via targeted gene deletions, to use its native funneling pathways to simultaneously convert plant-derived aromatic compounds containing syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H) aromatic units into 2-pyrone-4,6-dicarboxylic acid (PDC), a potential polyester precursor. In batch cultures containing defined media, the engineered strain converted several of these depolymerization products, including S-diketone and G-diketone (non-natural compounds specifically produced by chemical depolymerization), into PDC with yields ranging from 22% to 100%. In batch cultures containing a heterogeneous mixture of aromatic monomers derived from chemical depolymerization of poplar lignin, 59% of the measured aromatic compounds were converted to PDC. Overall, our results show that N. aromaticivorans has ideal characteristics for its use as a microbial platform for funneling heterogeneous mixtures of lignin depolymerization products into PDC or other commodity chemicals.
The most abundant biomass-derived phenolics can be classified based on the number of methoxy groups attached to the main phenyl structure; these are syringyl (S; two methoxy groups), guaiacyl (G; one methoxy group), and p-hydroxyphenyl (H; no methoxy groups) units.12 Several approaches have been recently described for biomass deconstruction and lignin depolymerization that result in recovery of S, G, and H aromatic units.6 However, the heterogeneity of the resulting mixtures presents a major challenge for conversion into commodity chemicals because of the low quantity of valuable marketable compounds in deconstructed lignin samples and the technical limitations for their separation or purification from other components.7
We are exploring microbial strategies for the conversion of deconstructed lignin into commodity chemicals since microorganisms have evolved strategies to gain energy from the degradation of a large variety of aromatics compounds.13,14 Such strategies could be harnessed for the valorization of aromatic mixtures if the metabolic pathways are routed towards production of desirable chemical products.15 In general, microbial transformation of aromatic compounds occurs by a combination of upper metabolic pathways, which convert multiple compounds into key aromatic intermediates13 in what has been called “biological funneling”,16 and a central aromatic pathway that breaks the aromaticity and renders metabolic products that enter central carbon metabolism.13,14 Biological funneling has been recently described for the conversion of plant-derived phenolics to aromatic compounds such as vanillin17 and benzoic acid,18 and to non-aromatic compounds, such as cis,cis-muconate,19 β-keto adipate,20 muconolactone,20 2-pyrone-4,6-dicarboxylic acid (PDC),21,22 pyridine-2,4-dicarboxylic acid,23 and polyhydroxyalkanoates.16 Some of these approaches require extensive metabolic re-routing and introduction of foreign pathways,19,22 while others rely on a small number of mutations that redirect aromatic metabolism to the product of interest.17,18
Here we report on the impact of gene deletions in the central aromatic catabolic pathways of Novosphingobium aromaticivorans DSM12444, an organism known to degrade aromatic compounds24 and to break down interlinkages in lignin,25 that allow it to funnel a large diversity of plant-derived phenolics into PDC, a potential bioplastic and epoxy adhesives precursor.26 A complete genome sequence is available for this α-proteobacterium (GenBank NC_007794.1), and the organism is amenable to genetic and genomic techniques needed to test the role of individual genes in aromatic metabolism, and model, engineer, or improve its pathways.25 Specifically, we show that by using a defined set of mutations, N. aromaticivorans can be engineered to simultaneously produce PDC from all three major types of plant-derived phenolic compounds (S, G, and H). In addition, we find that this organism can metabolize aromatics simultaneously with the use of other organic carbon sources (such as glucose), a feature that allows mutant strains to excrete compounds derived from the incomplete metabolism of the aromatics. This work represents a valuable advance in using bacteria to funnel aromatic compounds into defined single commodities and shows that N. aromaticivorans could be an ideal microbial chassis for valorization of lignin and other plant-derived aromatics.
Fig. 1 Predicted pathways of S unit (syringic acid), G unit (vanillic acid), and H unit (p-hydroxybenzoic acid) metabolism in N. aromaticivorans DSM12444, based on work in Sphingobium sp. SYK-61 and N. aromaticivorans DSM12444.2 In this model, deletions of the genes ligI (Saro_2819), desC (Saro_2864), and desD (Saro_2865) are hypothesized to enable the funneling (represented by light blue arrows) of S, G, and H lignocellulosic biomass-derived aromatic compounds into 2-pyrone-4,6-dicarboxylic acid (PDC). Abbreviations: 3-methylgallate, 3-MGA; 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate, CHMOD; 4-carboxy-2-hydroxy-cis,cis-muconate-6-semialdehyde, CHMS; 4-oxalomesaconate, OMA. |
Dimethoxylated aromatics (S aromatics) are predicted to be degraded via a separate pathway, with demethylation of syringic acid to 3-methylgallate (3-MGA) carried out by the O-demethylase DesA (Fig. 1). In N. aromaticivorans, LigAB has been proposed to catalyze ring opening to produce a mixture of stereoisomers of 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD); a cis–trans isomerase, DesD, isomerizes one of the stereoisomers, and the methylesterase DesC completes demethylation of CHMOD to OMA.2 Two other routes of 3-MGA degradation are proposed in Sphingobium sp. SYK-6, one requiring ring opening by the 3,4-dioxygenase DesZ and cyclization to PDC and another one requiring O-demethylation to gallate by LigM followed by ring opening by the dioxygenase DesB.1 While LigM is present in N. aromaticivorans, homologues of DesZ and DesB are not encoded in its genome.2 In addition, the LigAB of Sphingobium sp. SYK-6 has been shown to produce a combination of CHMOD and PDC when 3-MGA is the substrate,28 and there are reports of slow abiotic transformation of CHMOD to PDC.29 Therefore, in our model (Fig. 1), we hypothesize that the main enzymatic route of 3-MGA degradation in N. aromaticivorans is via CHMOD to OMA, but that PDC may also be a product of enzymatic or abiotic CHMOD transformation.
We used the above model to hypothesize which disruptions in the aromatic degradation pathways in N. aromaticivorans would lead to accumulation of specific pathway intermediates. We chose to focus on creating mutations that could lead to accumulation of PDC (Fig. 1), which is of particular interest since this dicarboxylic acid has been shown to be a suitable precursor for polyesters.30 We hypothesized that a disruption of the proposed G and H degradation pathway via the deletion of the ligI gene (Fig. 1) would prevent PDC degradation and lead to its accumulation in cultures fed G and H aromatics as substrates. Furthermore, we predicted that this metabolic disruption would result in strains with limited ability to grow on G and H aromatics, since most of the carbon in these compounds would remain in the PDC molecule. If this latter prediction is correct, then the addition of another substrate would be needed to support growth of cells on G or H aromatics lacking a functional ligI gene. In addition, given the possibility of PDC production from CHMOD (Fig. 1), we also hypothesized that deleting the desCD genes would result in accumulation of upstream intermediates and redirection of metabolism via PDC (Fig. 1).
Below we describe how we tested these hypotheses and how the defined mutations lead to PDC accumulation from (i) G and H units, (ii) S, G, and H units, and (iii) aromatics that are present in depolymerized lignin.
In theory, other G and H aromatics metabolized by N. aromaticivorans would also produce PDC when fed to strain 12444ΔligI (Fig. 1). We tested this prediction with the G aromatics vanillin and ferulic acid and the H aromatics p-hydroxybenzaldehyde and p-coumaric acid (Fig. S1† and Table 1). Cultures grown on minimum media with 3 mM vanillin plus 3 mM glucose showed transient accumulation of vanillic acid (Fig. S1A†), then a nearly stoichiometric accumulation of PDC. In the cultures grown with glucose and p-hydroxybenzaldehyde (Fig. S1B†), a transient accumulation of extracellular p-hydroxybenzoic acid and protocatechuic acid was observed, then accumulation of PDC with a 79% (±2%) yield (Table 1). Cultures grown on ferulic acid plus glucose showed a transient accumulation of vanillic acid and protocatechuic acid (Fig. S1C†), then accumulation of PDC with a 76% (±10%) yield (Table 1). Similarly, the cultures grown with p-coumaric acid and glucose transiently accumulated extracellular p-hydroxybenzoic and protocatechuic acids (Fig. S1D†), then accumulated PDC with an efficiency of 84% (±5.4%) (Table 1).
These results are consistent with transformation of G and H aromatics via the predicted pathway of Fig. 1. The observed PDC yields (Table 1) suggest that PDC is the main intermediate that accumulates, and that disruption of the ligI gene is sufficient to prevent PDC catabolism.
The inability of 12444ΔligI to metabolize PDC is not predicted to affect the degradation of aromatics containing S units, since the metabolism of these compounds would follow the 3-MGA, CHMOD, OMA pathway (Fig. 1). In agreement with this hypothesis, when strain 12444ΔligI was fed 3 mM syringic acid as the sole carbon source, growth of this mutant reached final cell densities similar to those of parent strain 12444Δ1879 and this aromatic was metabolized to a similar extent in both strains (Fig. 4). This observation confirms that LigI is not necessary for syringic acid degradation. However, these experiments also showed that PDC accumulates in the growth media in both cases, representing 28% (0.97 mM) and 26% (0.89 mM) of the initial concentration of syringic acid for strains 12444Δ1879 and 12444ΔligI, respectively.
Growth was not observed when strain 12444ΔdesCD was cultured in minimal media with 3 mM syringic acid as the sole carbon source (Fig. 5A), indicating that either desC, desD or both genes are essential for growth on syringic acid, in agreement with observations reported previously.2 To test the 12444ΔdesCD strain for a defect in S aromatic metabolism when growth was occurring, we inoculated the strain into media containing both 3 mM glucose and 3 mM syringic acid (Fig. 5C). The 12444ΔdesCD strain grew, with consumption of both syringic acid and glucose, and with increased PDC accumulation compared to strain 12444Δ1879, converting 49% (±0.9%) of the syringic acid into PDC (versus 28% for 12444Δ1879; Fig. 4C). This suggests that increased cyclization of CHMOD to PDC took place, although this observation is not sufficient to determine whether the reaction is abiotic or enzymatic. Growth of 12444ΔdesCD on vanillic acid as the only carbon source demonstrated that the disruption in desCD does not affect the catabolism of G units and does not lead to detectable PDC accumulation (Fig. S2†).
PDC production from syringaldehyde by strain 12444ΔligIΔdesCD was also tested. When this strain was grown on 1 mM syringaldehyde plus 3 mM glucose (Fig. S3E†), syringaldehyde disappeared from the growth media, syringic acid was transiently detected, and PDC accumulated with a 90% (±7%) yield (Table 1).
Glucose | Glucose + protocatechuic acid | |
---|---|---|
Maximum cell density (Klett) | 165.3 (±0.58) | 201.7 (±2.08) |
Metabolities concentration immediately after inoculation | ||
Glucose (mM) | 3.1 (±0.02) | 3.1 (±0.04) |
Protocatechuic acid (mM) | 0.0 | 2.9 (±0.02) |
PDC (mM) | 0.0 | 0.0 |
Metabolities concentration at stationary phase | ||
Glucose (mM) | 0.0 | 0.0 |
Protocatechuic acid (mM) | 0.0 | 0.2 (±0.03) |
PDC (mM) | 0.0 | 2.3 (±0.04) |
PDC yield (%) | 0.0 | 85 (±1.10) |
In the abiotic control, none of the aromatic compounds were transformed after 77.5 h of incubation (Fig. S3D, S6B and S7†). In the inoculated cultures, both strains grew, and, in both cases, all the major aromatic compounds (G-diketone, S-diketone, p-hydroxybenzoic acid, vanillin, vanillic acid, syringaldehyde, and syringic acid) disappeared from the growth media (Fig. 6 and Fig. S3† panels B and C). PDC only accumulated in the 12444ΔligIΔdesCD cultures, reaching a concentration of 0.49 mM (±0.02), which corresponds to a molar yield of 59% (±1.9%) assuming that all of the above aromatics were used as a source of this compound (Fig. 6).
Gel permeation chromatography (GPC) was performed to determine the presence of, and evaluate changes in, oligomeric lignin fragments found in these depolymerized lignin samples (Fig. S6 and S7†). This analysis showed presence of compounds with a wide range of molecular weights (Mw), which we grouped in 2 ranges (see Materials and methods). Based on the analysis of standards, compounds eluting between 17.0 and 22.7 min corresponded to oligomeric lignin fragments, while compounds eluting after 22.7 min are dimeric and monomeric compounds. An abiotic control showed that during 78 hours of incubation there was an observable increase in low Mw oligomers, likely from reactive monomer condensation, that resulted in an average Mw decrease from 857 to 722 Da (Fig. S7†). Both microbial cultures showed a decrease in the dimeric and monomeric compounds (signals eluting after 22.7 min) compared to the abiotic control sample. As with the sample before incubation, both microbial cultures showed the decrease in oligomer Mw attributed to reactive monomer condensation, but not as much as in the abiotic control (Fig. S7†). Accumulation of PDC in experiments with 12444ΔligIΔdesCD was observable by a peak at 23.55 min (Fig. S6†), corresponding to that of the PDC standard, which was not observed in the abiotic control or the experiment with the parent strain 12444Δ1879.
While the above data suggest that 12444ΔligIΔdesCD is able to convert the G, S, and H units found in depolymerized lignin into PDC, the lack of stoichiometric conversion into PDC makes it difficult to assess how well each substrate is metabolized and converted into this product. To specifically test PDC production from the S and G aromatic diketones, we grew cultures of N. aromaticivorans strain 12444ΔligIΔdesCD on minimum media supplemented with chemically synthesized S-diketone plus glucose or G-diketone plus glucose (see ESI† for aromatic diketone synthesis procedures). In the cultures containing S-diketone, 12444ΔligIΔdesCD grew, glucose and the aromatic diketone disappeared from the growth media, and PDC accumulated with a yield of 22.0% (±0.7%) (Table 1, Fig. 7, panels A and C). On the other hand, in the cultures supplemented with G-diketone (which contained small amounts of vanillic acid and vanillin as impurities from the synthesis method) both glucose and the aromatic substrates disappeared and PDC accumulated (Fig. 7, panels B and D), with a nearly stoichiometric yield (107% ± 1.6%, Table 1) for G-diketone (assuming a 100% yield from the vanillic acid and vanillin impurities). From this, we conclude that strain 12444ΔligIΔdesCD metabolizes these S and G diketones, using pathways that are also involved in degradation of the S, G and H aromatics normally found in lignin, and converts them into PDC, albeit at different efficiencies.
The present study addresses each of these issues using mutant strains of N. aromaticivorans DSM12444, a microbe naturally capable of degrading S, G, and H type aromatic compounds, as a well as lignin derived aromatic dimers.25,33 We chose N. aromaticivorans DSM12444 due to its known or predicted ability to grow in the presence of multiple aromatic compounds, its suitability for genetic analysis and modification, its ability to co-metabolize aromatics in the presence of other organic compounds (such as sugars, which are another plentiful product of plant biomass degradation), and the potential to produce single valuable products using defined mutants.
The efficiency of carbon recovery in valuable compounds depends on factors such as the target product, the minimization of undesired metabolic byproducts, and number or amount of substrates being metabolized by the bacterium. Products derived from metabolic intermediates in the upper aromatic catabolic pathways of bacteria like N. aromaticivorans DSM12444 should yield higher carbon recovery than products derived from lower pathways, where more carbon may have already been lost during degradation. We selected PDC as the target product for this study because, in addition to its proven potential as a polyester precursor,26 it is the earliest compound in which the degradation pathways for S, G, and H aromatic compounds were predicted to converge in defined N. aromaticivorans mutants (Fig. 1).
The observation of PDC accumulation when strain 12444Δ1879 was grown on syringic acid (28%; Fig. 4C) was surprising, since we had predicted that the majority of the syringic acid would follow the 3-MGA, CHMOD, OMA pathway (Fig. 1) when the pathway was not altered by mutation. Furthermore, we had predicted that any PDC formed during syringic acid degradation in this strain would be oxidized by LigI to OMA (Fig. 1). The sequential increase in PDC yield in strains 12444ΔdesCD (49%; Fig. 5E) and 12444ΔligIΔdesCD (66%; Fig. 5F) confirms the participation of DesC, DesD, and LigI in the degradation of S type aromatics in N. aromaticivorans and suggests that a large fraction of the syringic acid is naturally channeled through PDC. Since PDC does not accumulate in 12444Δ1879 cultures grown on the products from chemically depolymerized lignin (Fig. 6D) we offer two alternative hypotheses that would need to be tested in the future. First, it is possible that G or H substrates regulate expression of LigI in N. aromaticivorans. Thus, LigI would be poorly or not expressed when S type aromatics are the sole carbon source, allowing for some PDC accumulation by strain 12444Δ1879 grown on syringic acid. On the other hand, LigI would be expressed when 12444Δ1879 is grown on the mixtures of S, G, and H aromatics present in depolymerized lignin, preventing PDC accumulation. Alternatively, since it is not known whether CHMOD transformation to PDC is abiotic or enzymatic, it may be possible that CHMOD is secreted into the growth media where it undergoes spontaneous cyclization, resulting in extracellular PDC accumulation. Higher PDC yields by 12444ΔdesCD and 12444ΔligIΔdesCD could then be explained by increased CHMOD secretion when the aromatic degradation pathways are blocked.
We observe nearly stoichiometric conversion of vanillin and G-diketone into PDC, without extracellular accumulation of other aromatics. However, conversion of p-coumaric acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, ferulic acid, vanillic acid, syringaldehyde, syringic acid, and S-diketone to PDC was found to have somewhat lower efficiencies (Table 1). The non-stoichiometric conversion of these aromatic compounds into PDC by N. aromaticivorans is not due to accumulation of intermediate metabolites such as syringic acid, vanillic acid, p-hydroxybenzoic acid and protocatechuic acid, since they only accumulated transiently. Instead, the lower conversion efficiencies could potentially be explained by the presence of alternative, less efficient, and poorly studied pathways for the degradation of those compounds. For instance, the N. aromaticivorans genome contains multiple genes annotated as aromatic ring cleavage dioxygenases for which specificity has not yet been established.34 The presence of a catechol degradation pathway in N. aromaticivorans that uses 2,3-cleavage of the aromatic ring has been suggested as a possible alternative pathway for protocatechuic acid degradation.2 Such alternative non-specific reaction of a catechol dioxygenase could explain the observed lower efficiencies in the transformation of some G and H aromatics to PDC. This hypothesis is supported by the increased cell density observed in cultures of strain 12444ΔligIΔdesCD grown in media containing glucose plus protocatechuic acid compared to cultures only fed glucose (Table 2). Another enzyme with low substrate specificity appears to be the O-demethylase LigM, included in our model as catalyzing the demethylation of vanillic acid (Fig. 1). In Sphingobium sp. SYK-6, LigM is also predicted to catalyze O-demethylation of 3-MGA to gallate,1 which is then proposed to be oxidized to OMA by either LigAB, a dioxygenase with broad specificity (Fig. 1), or DesB, an enzyme not present in N. aromaticivorans. Although this route for degradation of S aromatics is not predicted to be important in N. aromaticivorans,2 LigM activity with 3-MGA and LigAB activity with gallate could contribute to lowering the efficiency of PDC formation from S aromatics by bypassing the blockage in S aromatic degradation intended with the desCD mutation. Thus, future identification and analysis of additional pathways involved in aromatic metabolism by N. aromaticivorans DSM12444 could provide useful information for further increasing the yield of PDC or other target chemicals by preventing aromatic substrates from being degraded by alternative routes.
Fed-batch experiments in a pH-controlled bioreactor showed an increase of up to 8.7 times in PDC titers with respect to titers obtained in batch experiments. These results show a promising potential for production of PDC from aromatic compounds. However, in this experiment, a progressive accumulation of aromatic substrates and glucose was observed. Additional research will be necessary to optimize culture conditions.
The efficiency of lignin conversion to a desired product is also impacted by the nature of the aromatic compounds that result from chemical lignin depolymerization, which may be different from natural products of environmental lignin depolymerization. Therefore, the existence of microbial pathways to metabolize these products could be crucial to increase product recovery. For example, formic-acid-induced depolymerization of oxidized lignin produces a high proportion of aromatic diketones,4 compounds that have also been reported to be present in lignocellulose dilute acid hydrolysates.35 Biological sources of these or structurally related compounds have not been reported, so it was previously unknown whether N. aromaticivorans DSM12444 could metabolize these products or convert them into PDC or other valuable materials. In this study, we found that N. aromaticivorans can convert both S- and G-type diketones into PDC, indicating that they are also degraded via the predicted aromatic degradation pathways (Fig. 1). However, the upper pathway enzymes that transform the diketones to known intermediates in the aromatic degradation pathways remain unknown.
Finally, chemically depolymerized lignin yields a variety of higher molecular weight lignin derived products in addition to monomeric units.4 Sphingomonad bacteria, such as N. aromaticivorans DSM12444, are known or predicted to be capable of breaking most of the linkages found between aromatic subunits in natural lignin in defined ways that yield predictable mono-aromatic products that can be further metabolized.1,36N. aromaticivorans, specifically, is known to be capable of degrading model aromatic dimers containing β-aryl–ether bonds25 and its genome contains homologs of genes that code for the degradation of other aromatic dimers in Sphingobium sp. SYK-6.1 This is an unexplored, but potentially important aspect of employing N. aromaticivorans as a platform microbe for valorization of mixtures of low molecular weight aromatic compounds generated from chemical depolymerization of lignin.
Escherichia coli cultures were grown in LB media containing 50 μg mL−1 kanamycin at 37 °C. N. aromaticivorans cultures were grown in SISnc-V0 media supplemented with the indicated carbon source at 30 °C. SISnc-V0 media is a modification of Sistrom's minimal media38 in which succinate, L-glutamate, L-aspartate, and vitamins were omitted. For routine culture and storage, the growth media was supplemented with 1 g L−1 glucose. For gene modifications, the growth media was supplemented with 1 g L−1 glucose and 50 μg mL−1 kanamycin, or 1 g L−1 glucose and 10% sucrose.
Quantitative analysis of glucose and formic acid were performed on an Agilent 1260 infinity HPLC equipped with a refractive index detector (HPLC-RID) (Agilent Technologies, Inc., Palo Alto, CA) and an Aminex HPX-87H with Cation-H guard column (BioRad, Inc. Hercules, CA). The mobile phase was 0.02 N sulfuric acid at a flow rate of 0.5 ml min−1.
Quantitative analysis of aromatic compounds and PDC were performed on a Shimadzu triple quadrupole liquid chromatography mass spectrometer (LC-MS) (Nexera XR HPLC-8045 MS/MS). The mobile phase was a binary gradient consisting of solvent A (water) and solvent B (0.1% formic acid in a 2:1 mixture of acetonitrile and methanol, v/v). The stationary phase was a Phemonenex Kinetex F5 column (2.6 μm pore size, 2.1 mm ID, 150 mm length, P/N: H18-105937). All compounds were detected by multiple-reaction-monitoring (MRM) and quantified using the strongest MRM transition (Table S3†).
Here, we focused on the microbial production of PDC from aromatic products known to be generated by chemical methods of lignin depolymerization. PDC has been shown to have potential as a precursor for polyesters and there is growing interest in using microbes to generate it from lignin.21,22 However, the range of lignin-derived aromatic substrates that could be converted into PDC was limited.21,22 This study expanded the range, as we demonstrated how we could take advantage of N. aromaticivorans’ natural ability to degrade plant-derived aromatics to create mutant strains that simultaneously funnel a wider range of lignocellulose-derived aromatic compounds (including S, G, and H units, and the non-natural S- and G-diketones) into PDC. It is also important that N. aromaticivorans naturally produces PDC via its native metabolic pathways, and therefore, creating PDC-producing strains did not require extensive genetic engineering and optimization steps. Future improvement in PDC yields would require identification of alternative pathways that may be contributing to aromatic degradation in this organism. Ultimately, the information and strategies developed here and in future optimizations of PDC production by N. aromaticivorans DSM12444 could potentially be used to develop this and other microbes into platforms for producing a wide range of additional valuable compounds from lignin.
Footnote |
† Electronic supplementary information (ESI) available: Supplemental figures, tables, and methods. See DOI: 10.1039/c8gc03504k |
This journal is © The Royal Society of Chemistry 2019 |