Issue 4, 2019

Three-dimensional origami paper-based device for portable immunoassay applications

Abstract

In this study, we demonstrate a three-dimensional surface-modified origami-paper-based analytical device (3D-soPAD) for immunoassay applications. The platform enables the sequential steps of immunoassays to be easily performed using a folded, sliding paper design featuring multiple pre-stored reagents, allowing us to take advantage of the vertical diffusion of the analyte through the different paper layers. The cellulose substrate is composed of carboxymethyl cellulose modified with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide, which provide covalent bonding sites for bio-recognition molecules. After the optimization of the operation parameters, we determined the detection limit of the 3D-soPAD for human immunoglobulin G (HIgG) which can be as low as 0.01 ng mL−1, with a total turnaround time of 7 min. In order to study the long-term storage of the platform, anti-HIgG horseradish peroxidase (aHIgG-HRP) conjugates were stored by freeze-drying in sugar matrices composed of 10% sucrose/10% trehalose (w/w%) on the paper device, retaining 80% of their activity after 75 days of storage at 4 °C. To evaluate the performance of the paper device using real samples, we demonstrated the detection of protein A (a biomarker for Staphylococcus aureus infection) in highly viscous human synovial fluid. These results show that the proposed 3D-soPAD platform can provide sensitive, high-throughput, and on-site prognosis of infection in resource-limited settings.

Graphical abstract: Three-dimensional origami paper-based device for portable immunoassay applications

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2018
Accepted
02 Jan 2019
First published
21 Jan 2019

Lab Chip, 2019,19, 598-607

Three-dimensional origami paper-based device for portable immunoassay applications

C. Chen, W. Yeh, T. Tsai, Y. Li and C. Chen, Lab Chip, 2019, 19, 598 DOI: 10.1039/C8LC01255E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements