Issue 3, 2019

Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media

Abstract

Two-dimensional (2D) crystalline nanomaterial based field-effect transistor (FET) water sensors are attracting increased attention due to their low cost, portability, rapid response, and high sensitivity to aqueous contaminants. However, a generic model to aid in sensor design by describing direct interactions between metal ions and 2D nanomaterials is lacking. Here, we report a broadly applicable statistical thermodynamics model that describes the behavior of FET sensors (e.g., lower detection limit) by relying only on the ion concentration and intrinsic properties of the sensor material such as band gap and carrier effective mass. Two regimes of the sensing mechanism (charge transfer vs. electrostatic gating) were predicted, depending on the relative size of the Debye screening length in the sensor material and the distance between adsorbed ions. At a lower ion adsorption density, the charge transfer effect is dominant, while the evolution from charge transfer to electrostatic gating effect occurs at a higher adsorption density as the distance between adsorbed ions approaches the Debye length. Owing to its tunable band gap, black phosphorus (BP) nanosheet FET sensors were selected to semi-quantitatively validate the model including the predicted evolution between the two sensing regimes. Among Na+, Mg2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions, BP nanosheet FET sensors were more responsive to Hg2+ ions for probe-free detection. The theoretical lower detection limit of Hg2+ ions can reach 0.1 nM (0.1 fM) in tap (deionized) water.

Graphical abstract: Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2018
Accepted
20 Nov 2018
First published
21 Nov 2018

Mol. Syst. Des. Eng., 2019,4, 491-502

Author version available

Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media

J. Chang, H. Pu, S. A. Wells, K. Shi, X. Guo, G. Zhou, X. Sui, R. Ren, S. Mao, Y. Chen, M. C. Hersam and J. Chen, Mol. Syst. Des. Eng., 2019, 4, 491 DOI: 10.1039/C8ME00056E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements