Issue 29, 2019

Ultrabright dye-loaded spherical polyelectrolyte brushes and their fundamental structure-fluorescence tuning principles

Abstract

Ultrabright fluorescent particles (UFPs) have attracted increasing attention because of their outstanding signal amplification functions. However, there is still an urgent demand for designing novel UFPs with new components or structures as the existing ones can not satisfy the practical requirements due to their inherent disadvantages. Here we propose a novel ultrabright fluorescent particle platform by doping dyes of 5-aminofluorescein (5-AF) into silica core-based spherical poly (acrylic acid) brushes (SiO2@PAA@5-AF) and discuss their fundamental structure-fluorescence tuning principles. A series of brushes with different polymer chain lengths are successfully synthesized and then loaded with 5-AF through chemical binding. The high loading amount, suitable density or distribution, and enhanced quantum yield (QY) of 5-AF due to the amide bond formation with PAA chains on brushes are concluded as the three major reasons for the ultrabrightness of SiO2@PAA@5-AF. Therefore, a 2350 ± 445 times brighter brush particle in comparison to a single quantum dot (QD) is realized, and a 2.1 ± 0.4 times fluorescence improvement of a brush vs. a QD normalized by volume is also achieved when taking the hydrodynamic diameter into consideration (∼300 nm vs. ∼30 nm). Moreover, the excellent tolerance stabilities in normally applied environments and outstanding label effects to form 4-plexed encoded beads are demonstrated as well. The results in this work strongly indicate a promising potential of SiO2@PAA@5-AF as an ultrabright and stable signal amplification tool for biomedical related sensing, labeling, and biodetection.

Graphical abstract: Ultrabright dye-loaded spherical polyelectrolyte brushes and their fundamental structure-fluorescence tuning principles

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2019
Accepted
01 Jul 2019
First published
02 Jul 2019

Nanoscale, 2019,11, 14050-14059

Ultrabright dye-loaded spherical polyelectrolyte brushes and their fundamental structure-fluorescence tuning principles

H. Masoomi, Y. Wang, X. Fang, P. Wang, C. Chen, K. Liu, H. Gu and H. Xu, Nanoscale, 2019, 11, 14050 DOI: 10.1039/C9NR02168J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements