Jun-Qiao Fenga,
Hong-Ze Ganga,
Dong-Sheng Lia,
Jin-Feng Liua,
Shi-Zhong Yanga and
Bo-Zhong Mu*ab
aState Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. E-mail: bzmu@ecust.edu.cn; Fax: +86 21 64252485; Tel: +86 21 64252063
bEngineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
First published on 26th March 2019
Biosurfactant lipopeptide is a promising dispersant over varieties of chemical ones in oil-spill remediation. The toxicity, biodegradability and performance of the biosurfactant lipopeptide are studied in this paper.
In the present work, the dispersion effectiveness, aquatic toxicity, biodegradability and environmental compatibility of the biosurfactant lipopeptide were determined using recognized standardized methods,19–23 and the biosurfactant lipopeptide used as a bio-dispersant for marine oil-spill remediation were studied, which is, to the best of our knowledge, the first report about biosurfactant lipopeptide used in oil-spill remediation.
The lipopeptide samples were isolated from cell-free broth of B. subtilis HSO121 at our laboratory.24 The typical chemical structure of the lipopeptide used in the study was shown in Fig. 1 and its critical micelle concentration (CMC) was 8.69 × 10−5 mol L−1.
Fig. 1 Typical chemical structure of lipopeptides (a) and the surface tensions of lipopeptides respect to concentrations (b). |
Dispersion effectiveness (DE) of lipopeptides was examined at different surfactant-to-oil ratios (SORs), temperatures, pH values, and salinities. It indicated in Fig. 2 that DE of lipopeptides reached 70.23% at SORs of 1:10 (w/w) at 25 °C, pH 7 and the present of 3% NaCl (w/v). It should be noticed that the DE of lipopeptides was almost kept when SORs dropped to 1:250 w/w. The increase in DE with increasing SORs can be attributed to the generation of emulsions with smaller droplets and lower rising velocity.2 Sharp drop off in DE was observed for lipopeptides when SORs below 1:500 (w/w), and DE value was 36.45% at an extreme SORs of 1:1250 (w/w). It had been reported that the abrupt decline for 80:20 lecithin:Tween 80 (w/w) surfactant happened when SORs below 1:100 v/v, from 77% (SORs 1:100 v/v) to 15% (SORs 1:200 v/v),25 indicating a lower SOR in lipopeptides usage could reach its maximum effectiveness. Lipopeptides exhibited >70% DE values with temperatures ranged from 15 °C to 25 °C, and an increasing DE values when pH values raised, the largest DE was 77.45% at pH 11. DE of lipopeptides increased from 56.12% to 71.14% with increase in salinity. Higher DE at higher salinity was observed for anionic biosurfactants, which can be attributed to the electrostatic repulsion between polar head groups reduced by ions, and a close-packed arrangement of surfactant molecules at the oil–water interface were formed.2
Fig. 2 The dispersion effectiveness (DE) of lipopeptides under different SORs (), temperatures (), pH values () and salinities (). |
Mortalities of zebrafish under different concentrations of different surfactants were shown in Fig. 3. It was evident that the toxicity of lipopeptides was far less than those of sodium dodecyl sulfate (SDS) and 3-(N,N-dimethyl palmityl ammonio) propane sulfonate (Betaine). The 24 h median lethal concentration (LC50) values were calculated and showed in Table 1. The 24 h LC50 values of lipopeptides, SDS, and Betaine for zebrafish were 1145 mg L−1, 8.25 mg L−1, and 0.872 mg L−1, respectively. The toxicity of SDS was comparable to the study by Edwards et al.,26 in which an 96 h LC50 of 1.9 mg L−1 for Cyprinodon variegatus was reported. Low toxicities of lipopeptides on whiteleg shrimp and copepods were also evaluated that the 96 h LC50 of lipopeptides from Bacillus sp. GY19 were 1050 mg L−1 and 1174 mg L−1, respectively.27
Surfactant | LC50 (mg L−1) | 95% confidence intervals (mg L−1) | r |
---|---|---|---|
Lipopeptide | 1145 | 1090–1229 | 0.981 |
SDS | 8.25 | 7.75–8.77 | 0.998 |
Betaine | 0.872 | 0.853–0.890 | 0.988 |
Fig. 4 illustrated the evolution of Pseudokirchneriella subcapitata concentrations in the algal growth inhibition test of lipopeptides and SDS. Growth rates of P. subcapitata were decreased with the increase of surfactant concentrations. 72 h median effect concentration (EC50) values were calculated using linear regression analysis based on the dose–response curves,28 and the 72 h EC50 value of lipopeptide was 1703 mg L−1, which was about 45 times higher than that of SDS, 36.51 mg L−1. EC50 was in well accordance with LC50 mentioned above, indicating that lipopeptides showed a much lower toxicity than that of SDS. The 72 h median inhibitory concentration (IC50, equivalent to EC50) of SDS on Raphidocelis subcapitata was 36.58 mg L−1,29 which was relatively close to the result in this work. However, De Oliveira et al.28 showed that the EC50 of crude surfactin on Selenastrum capricornutum (named as well as P. subcapitata) from B. subtilis ICA56 was 49.3 mg L−1. The lower toxicity of lipopeptides in our study was probably because the lipopeptides from various Bacillus sp. strains might have different activity.27 The EC50 values for 9 types of surfactants including anionic surfactants, nonionic surfactants, and zwitterionic surfactants on P. subcapitata were range from 1.5 to 4.4 mg L−1.30 Hence, according to data mentioned, lipopeptides from HSO121 in the present showed less toxicity.
Fig. 4 Effect of lipopeptides and SDS on growth concentrations (c) of Pseudokirchneriella subcapitata during 72 hours of incubation. |
Biodegradabilities of lipopeptides and sodium dodecyl benzene sulfonate (SDBS) versus time were shown in Fig. 5. With the same initial concentrations, 30 mg L−1, biodegradability values of biosurfactant lipopeptides and the synthetic surfactant SDS after 7 days incubation were 100% and 98.83%, respectively. Lipopeptides degraded much faster than SDBS that the degradability was nearly 100% after 3 days. Biodegradability of lipopeptides by P. putida CECT 324 strain, around 82% after 3 days, was reported, which was higher than that of amine oxides.29 Lipopeptides showed higher biodegradability as 94.01% even increasing the initial concentration to 300 mg L−1. Lima et al.31 studied the biodegradability of surfactants and observed the lowest decrease (24.8%) in SDS, the highest decrease in lipopeptides (69.1%) and glycolipid (73.4%). Biosurfactants were seemed to be more biodegradable than synthetic surfactants.
Fig. 5 Degradation of surfactants (DS) including lipopeptides and SDBS during 7 d test in activated sludge systems. |
The degradation rates of aliphatic fractions (n-C11–C29) in crude oil (Xinjiang oilfield, P. R. China) were analysis using GC-MS and the results were illustrated in Fig. 6. Significant degradation rates of n-alkanes were observed in presence of biosurfactant lipopeptides, while n-alkanes dispersed by commercial dispersant degraded similar to that in control group (in absence of any surfactant). It was well known that the degradation rates of alkanes decreased and finally vanished with increase in the chain length of hydrocarbon. In the present study, lipopeptides showed excellent activity in accelerating degradation of long-chain hydrocarbons after 2 days. The alkanes degradation rates treated by lipopeptides after 1 day and 2 days were 38.78% (Fig. 6a) and 71.45% (Fig. 6b), respectively, which were much higher than those of commercial dispersant-treated group (9.16% and 34.16% after 1 day and 2 days treatment) and control group (13.26% and 33.55% after 1 day and 2 days treatment). It was reported that commercial chemical dispersants such as Corexit 9500A and GM-2 made no enhancement to the degradation of the petroleum hydrocarbons, whereas biosurfactants such as rhamnolipids enhanced the degradation.32,33 Degradation stimulation by lipopeptides could be attributed to their good dispersion activities and biocompatible. Dispersed oil droplets formed and considerable interfacial area was available to the microorganisms followed by microbial bioremediation. In addition, microorganisms could utilize the nutrients derived from culture broth as an excellent substrate for growth.34
Fig. 6 Degradation of n-alkanes in crude oil (DO) either non-dispersed (control) or dispersed by commercial dispersant (001#) and lipopeptides at day 1 (a), day 2 (b). |
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c9ra01430f |
This journal is © The Royal Society of Chemistry 2019 |