Issue 11, 2019

Adsorption of amino acids on graphene: assessment of current force fields

Abstract

We compare the free energies of adsorption (ΔAads) and the structural preferences of amino acids on graphene obtained using the non-polarizable force fields—Amberff99SB-ILDN/TIP3P, CHARMM36/modified-TIP3P, OPLS-AA/M/TIP3P, and Amber03w/TIP4P/2005. The amino acid–graphene interactions are favorable irrespective of the force field. While the magnitudes of ΔAads differ between the force fields, the relative free energy of adsorption across amino acids is similar for the studied force fields. ΔAads positively correlates with amino acid–graphene and negatively correlates with graphene–water interaction energies. Using a combination of principal component analysis and density-based clustering technique, we grouped the structures observed in the graphene adsorbed state. The resulting population of clusters, and the conformation in each cluster indicate that the structures of the amino acid in the graphene adsorbed state vary across force fields. The differences in the conformations of amino acids are more severe in the graphene adsorbed state compared to the bulk state for all the force fields. Our findings suggest that the force fields studied will give qualitatively consistent relative strength of adsorption across proteins but different structural preferences in the graphene adsorbed state.

Graphical abstract: Adsorption of amino acids on graphene: assessment of current force fields

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2018
Accepted
07 Feb 2019
First published
11 Feb 2019

Soft Matter, 2019,15, 2359-2372

Author version available

Adsorption of amino acids on graphene: assessment of current force fields

S. Dasetty, J. K. Barrows and S. Sarupria, Soft Matter, 2019, 15, 2359 DOI: 10.1039/C8SM02621A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements