Novel pyrene–pyridine oligomer nanorods for super-sensitive fluorescent detection of Pd2+†
Abstract
Conjugated polymers (CPs) can be fabricated into conjugated polymer nanoparticles of various shapes, thus tuning the hydrophobicity and sensing performances of the parent polymers. Herein, two new hydrophobic oligomeric CPs containing pyrene–pyridyl moieties, P1 and P2, were directly prepared and conveniently converted into hydrophilic nanorods, i.e. P1NRs and P2NRs (about 4–21 and 6–20 nm in diameter), by a modified microemulsion method. Notably, separated P1NRs exhibit excellent stability while P2NRs tend to stack on each other perhaps due to their different rigidity of π-delocalized backbones, which may have a profound effect on their fluorescence properties. In addition, Pd2+ can coordinate with the pyridyl N atoms, thereby causing ultrasensitive fluorescence quenching of P1NRs and P2NRs owing to the aggregation of oligomeric CP nanorods. These two simple nanosensors can help to determine Pd2+ with detection limits as low as 1 and 70 nM, respectively. It is worth noting that biocompatible P1NRs with bright blue fluorescence can be employed for efficient imaging of trace level Pd2+ ions in live cells.