Issue 9, 2020

A multi-targeting strategy to ameliorate high-fat-diet- and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts

Abstract

NAFLD (non-alcoholic fatty liver disease) is a multifactorial liver disease related to multiple causes or unhealthy conditions, including obesity and chronic inflammation. The accumulation of excess triglycerides, called steatosis, is known as a hallmark of an imbalance between the rates of hepatic fatty acid uptake/synthesis and oxidation/export. Furthermore, occurrence of NAFLD may lead to a cocktail of disease consequences caused by the altered metabolism of glucose, lipids, and lipoproteins, for instance, insulin resistance, type II diabetes, nonalcoholic steatohepatitis (NASH), liver fibrosis, and even hepatocarcinogenesis. Due to the complexity of the occurrence of NAFLD, a multi-targeting strategy is highly recommended to effectively address the issue and combat the causal loop. Ethanol extracts of legumes are popular supplements due to their richness and diversity in phytochemicals, especially isoflavones and anthocyanins. Although many of them have been reported to have efficacy in the treatment of different metabolic syndromes and obesity, there have not been many studies on them as a supplemental mixture. In this study, the alleviative effects of selected legume ethanol extracts (CrE) on high-fat-diet- and fructose-induced obesity, liver steatosis, and hyperglycemia are discussed. As revealed by the findings, CrE not only ameliorated obesity in terms of weight gained and enlargement of adipose tissue, but also significantly reduced the incidence of steatosis via phosphorylation of AMPK, resulting in inhibition of the downstream SREBP-1c/FAS pathway and an increase in an indicator of β-oxidation (carnitine palmitoyl transferase 1a, CPT1A). Furthermore, CrE dramatically alleviated inflammatory responses, including both plasma and hepatic TNF-α, IL-6, and MCP-1 levels. CrE also had attenuating effects on hyperglycemia and insulin resistance and significantly reduced the fasting glucose level, fasting insulin level, and plasma leptin, and it exhibited positive effects in the Oral glucose tolerance test (OGTT) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). At the molecular level, CrE could activate the PI3K/Akt/Glut2 pathway, which indicated an increase in insulin sensitivity and glucose uptake. Taken together, these results suggest that ethanol extracts of legumes could be potential supplements for metabolic syndromes, and their efficacy and effectiveness might facilitate the multi-targeting strategy required to mitigate NAFLD.

Graphical abstract: A multi-targeting strategy to ameliorate high-fat-diet- and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts

Supplementary files

Article information

Article type
Paper
Submitted
29 May 2020
Accepted
23 Jul 2020
First published
23 Jul 2020

Food Funct., 2020,11, 7545-7560

A multi-targeting strategy to ameliorate high-fat-diet- and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts

Y. Koh, Y. Lin, P. Lee, T. Lu, K. Lin and M. Pan, Food Funct., 2020, 11, 7545 DOI: 10.1039/D0FO01405B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements