Jose Miguel
Mateo
a,
Antonio de la
Hoz
a,
Laura
Usón
bc,
Manuel
Arruebo
bc,
Victor
Sebastian
bc and
M. Victoria
Gomez
*ad
aDepartment of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. E-mail: mariavictoria.gomez@uclm.es
bDepartment of Chemical & Environmental Engineering, Nanoscience Institute of Aragon (INA), Aragón Materials Science Institute, ICMA, University of Zaragoza, Mariano Esquillor edif. I+D, 50018 Zaragoza, Spain
cCIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
dRegional Institute of Applied Scientific Research (IRICA), Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela, sn, 13071 Ciudad Real, Spain
First published on 12th August 2020
High-resolution solution Nuclear Magnetic Resonance (NMR) spectroscopy has been used to gain insights into the mechanism of the formation of gold, platinum and gold–platinum alloyed nanoparticles using metal precursors and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as starting materials. THPC is widely used in nanochemistry as a reductant and stabilizer of nanoparticles, however the identity of the species responsible for each role is unknown. The multinuclear study of the reaction media by NMR spectroscopy allowed us to elucidate the structure of all the compounds that participate in the transformation from the metal salt precursor to the reduced metal that forms the nanoparticle, thus clarifying the controversy found in the literature regarding the formation of THPC-based compounds. The progress of the reaction was monitored from the initial moments of the synthesis to the end of the reaction and after long periods of time. Insights into the dual role of THPC were gained, identifying methanol and hydrogen as the actual reducing agents, and tris(hydroxymethyl)phosphine oxide (THPO) as the real stabilizing agent. Finally, the different stabilities of gold and platinum nanoparticles can be attributed to the different catalytic activities of the metals.
The chemical reduction of metal salt precursors is a widely used strategy to obtain metallic nanostructures.10–16 In this approach a reducing agent is mixed with a metal precursor salt in the presence of stabilizing agents such as ligands, polymers or surfactants, which prevent agglomeration of the resulting nanoparticles by electrostatic stabilization or by steric hindrance due to the coupling of large molecules.
A novel method was proposed for the synthesis of gold nanoparticles at room temperature, and consisted in using tetrakis(hydroxymethyl)phosphonium chloride [P+(CH2OH)4Cl−] (THPC) as the starting material, an organophosphorus compound which plays a dual role as the reducing and ionic stabilizing agent.17–23 THPC finds numerous applications not only in nanochemistry but also in the textile industry, oil industry, leather industry, in medical uses as an oxygen-scavenger, and as a biocide in water systems among others, with 2021 becoming the 100 year anniversary of hydroxymethyl phosphonium salts.24 Regarding nanochemistry, the use of this compound resulted in an efficient method to produce nanomaterials with narrow size distribution and high colloidal stability. THPC promotes the nucleation and growth of noble metal atoms and also reduces the surface energy to provide stable ultra-small colloidal nanoparticles. Nevertheless, neither the mechanism of formation of nanoparticles nor the identity of stabilizing and reducing agents has been previously investigated regarding the wide use of THPC for the synthesis of noble metal nanoparticles.
Following this method, Sebastian et al. synthesized monometallic nanoparticles and bi-/tri-metallic nanoalloys containing noble metals.25 THPC was used as the starting material for the reduction of metal precursors, resulting in nanoparticles which had mean diameters of less than 4 nm with narrow size distributions and high stability in aqueous solution for long periods.
Afterwards, they also investigated the formation of bimetallic monodisperse alloys using THPC, and they were able to control the size of metallic nanoparticles (nanoparticle size < 5 nm) by means of preparing them separately with selected capping agents.26
More recently, they reported a novel methodology for the continuous production of Pt-based heterogeneous catalysts based on ultra-small noble metal nanoparticles using THPC.27 The use of microfluidic reactors enabled the fast and controlled production of Pt nanoparticles (and also, Pt–Pd, Pt–Ru and Pt–Rh alloy nanoparticles) in short residence times (1–5 min) and with a productivity that was twice the one achieved in conventional batch type reactors.
Neutralization of THPC with a base in the absence of metal salt precursors has been studied,28,29 but there is some controversy concerning the formation of THPC derived compounds that take part in the reaction pathway. THPC was reported to react with aqueous sodium hydroxide to give tris(hydroxymethyl)phosphine [P(CH2OH)3](THP) and formaldehyde (HCHO) at room temperature (1):
P+(CH2OH)4Cl− + OH− → P(CH2OH)3 + CH2O + H2O + Cl− | (1) |
P(CH2OH)3 + H2O → OP(CH2OH)3 + H2 | (2) |
It is also believed that THP in the presence of an aqueous solution of formaldehyde produces both THPO and tetrakis(hydroxymethyl) phosphonium hydroxide [P+(CH2OH)4OH−] (THPOH) but THPOH is rapidly converted to THPO31–33(3):
P(CH2OH)3 + CH2O + H2O → P+(CH2OH)4OH− → OP(CH2OH)3 + CH2O + H2 | (3) |
However, other authors have reported that THPO is formed from THPC through THPOH and THP34–36(4):
P+(CH2OH)4Cl− + H2O ⇌ P+(CH2OH)4OH− + HCl | (4) |
P+(CH2OH)4OH− ⇌ P(CH2OH)3 + CH2O + H2O |
P(CH2OH)3 + 1/2O2 → OP(CH2OH)3 |
It is also reported in the literature that THP and THPO can be neutralized with formaldehyde to produce hemiacetals, such as P(CH2OH)2(CH2OCH2OH) or OP(CH2OH)2(CH2OCH2OH).35
It can be seen from all these previous studies24,28–36 that both the origin and the order of formation of the different THPC derived compounds remain unclear (i.e., THP, THPO, and THPOH). All of these compounds have been studied by 1H and 31P NMR spectroscopy under certain experimental conditions of pH and temperature, and the reactions shown in (1)–(4) have been postulated to occur under these conditions.37–39 However, evidence for the reaction pathway in the presence of noble metal precursors has not been reported to date. Hence, NMR spectroscopy, as an analytical tool for the characterization of all species that participate in the reaction pathway, could address this gap.40
We report here a feasible mechanism for the formation of gold and platinum nanoparticles and platinum–gold alloys using tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the starting material (Fig. 1), and employing NMR spectroscopy as an analytical tool.40 Using spectroscopic analytical tools, we describe the direct observation of key compounds that participate in the transformation from the metal salt precursor to the reduced form of the metal, from the initial moments of the synthesis to the end of the reaction once the nanoparticles are formed. All the THPC derived compounds that were present in the reaction media were characterized by 1H-, 31P- and 13C-NMR spectroscopy (Fig. S1, S2, S3, Table S1†). Furthermore, evidence for the origin and the order of formation of the THPC derived compounds in the absence and presence of noble metal precursors is presented, with a clear explanation of the formation of THPOH. We explain the different behaviours observed for two different metals (Au and Pt) considering their different catalytic activities, and we also demonstrate by NMR spectroscopy the real role of THPC not only in the reduction of metal salt precursors but also in the stabilization of the resulting nanoparticles.
Fig. 1 Schematic representation of Au, Pt and Au–Pt nanoparticles synthesized with THPC as the starting material. |
The first control experiment (1) showed a large signal corresponding to THPC (4.61 ppm) along with two signals for THPO (4.07 ppm) and THP (4.00 ppm) as minor components (Fig. S1a†). The molar ratio of the different species in solution is 0.91, 0.045, and 0.045, for THPC, THP and THPO, respectively. THPOH (3.61 ppm) was barely detected in this control experiment. When NaOH was added to the THPC solution, control experiment (2), the initial moments of the reaction show that THPC completely disappeared and the molar ratios were 0.80 and 0.20 for THP and THPO, respectively (Fig. S1b†). For the third control experiment (3), the Pt precursor was added to a solution of THPC in D2O (in the absence of NaOH) (Fig. S1c†), and only THPC and THPO were present in the reaction showing a molar ratio of 0.95 and 0.05 for THPC and THPO respectively.
The in situ1H NMR analysis of the second control experiment (2), when adding NaOH to THPC in D2O, is shown in Fig. 2: it could be clearly observed that THPC was totally converted into THP in the initial stages of the reaction (THPC was not observed at time = 0), as the integral value for THP considerably increased when comparing to the integral values in the control experiment numbered as 1 (where THP was almost undetected). The consumption of THP matched to the formation of THPO and THPOH. From 10 h on, THP disappeared from the reaction medium, thus converting itself into THPO (Fig. 2a) as well as into THPOH (Fig. 2b), and then both remained constant with time. Additionally, two other signals appeared with time (Fig. 2b): formate (HCOO−)41 and CH3OH, both compounds coming as a consequence of the release of HCHO from THPC as previously reported.28,29,36 It should be taken into account that hydration and dimerization reactions occur when formaldehyde is in an aqueous solution, and the corresponding reaction products are not easily observed by NMR spectroscopy requiring specific methods for their monitoring.42 In the absence of basic media, a peak at 4.9 ppm has been observed which might correspond to methylene glycol (HOCH2OH), the major specie as a result of a fast hydration of formaldehyde.42
Fig. 2 NMR reaction monitoring of THPC/NaOH in D2O. (a) THPO (blue) and THP (orange). (b) THPOH (yellow), HCOO− (green), and CH3OH (red). |
Regarding the in situ NMR monitoring of the third control experiment (3) (Pt precursor added to THPC in D2O, in the absence of NaOH), the reaction progress is shown in Fig. 3. In the initial stages of the reaction, THPC was present in high amounts and started to decrease gradually (Fig. 3a). Formic acid (8.22 ppm) is identified at a different chemical shift than formate (8.44 ppm) from the previous control experiment, due to the absence of any base in the reaction medium. No evidence of THP was observed, presumably due to the coordination of this compound to the Pt-complex as explained as follows.43–45 It is reported that THP is an excellent ligand for platinum. The addition of THP to a solution of PtCl62− renders a platinum complex [PtCl2{P(CH2OH)3}2] that can evolve into a complex mixture of platinum coordinated complexes,44,45 some of them can undergo intermolecular phosphine exchange rapidly on the NMR time scale and therefore can be observed as broad peaks at room temperature, or even not visible due to relaxation problems by chemical shift anisotropy.45 Remarkably, a peak at 4.5 ppm is observed in the control experiment numbered as (3) where the Pt precursor is present (Fig. S1c†), this peak could be attributable to platinum–THP coordinated complexes according to the literature.45 This fact can explain the disappearance of THPC in the presence of the Pt precursor while no other THPC derived compound appears over time. The THP that is formed from THPC with time coordinates to Pt and its signal is not visible in the NMR spectrum. While THPC gradually decreases in 5 h (Fig. 3a), THPO (Fig. 3a) and THPOH (Fig. 3b) show a slight increase with time. HCOOH and CH3OH were also formed.
Fig. 3 NMR reaction monitoring of THPC/Pt precursor in D2O. (a) THPO (blue) and THPC (grey). (b) THPOH (yellow), HCOOH (green), and CH3OH (red). |
From these control experiments, some evidence can already be concluded: THPC is converted into THP, and subsequently, into THPO and THPOH (Fig. 2). Besides, the presence of NaOH accelerates the transformation from THPC to THP, as the former (THPC) is not observed even at the very first reaction stages (Fig. 2a). This fact is also corroborated when looking at Fig. 3a (absence of NaOH), where THPC is still observed. In the presence of the Pt precursor, no evidence of THP is observed, and THPC is being consumed while other THPC derived compounds (THPO or THPOH) have reached the equilibrium concentration (Fig. 3).
Fig. 4 NMR reaction monitoring of THPC/NaOH/Pt precursor in D2O. (a) THPO (blue). (b) THPOH (yellow), HCOO− (green), and CH3OH (red). |
Additional off-line experiments, that is, conducting the reaction in a glass vial and subsequently taking aliquots and analysing them by NMR, showed the same tendency previously observed with the in situ NMR reaction monitoring (Table S3†). It has to be mentioned that from 24–48 h on, approximately, the reaction mixture turned from colourless into blackish, the moment at which the nucleation and growth steps of the nanoparticles started.
In order to understand the different behaviour in comparison to the Pt precursor and to evaluate the reaction mechanism, the NMR reaction monitoring for the formation of Au nanoparticles and Au–Pt nanoalloys was also performed. Table S4† shows the evolution with time of the THPC derived compounds that appeared in each reaction, and Fig. 5 summarizes all these observations in the NMR spectra of the different nanoparticles for long reaction times (96 h). In the case of Au nanoparticles, THP was observed in high amounts at the beginning of the reaction and slowly evolved to THPO. THPO increased and THPOH was not observed (Table S4,†Fig. 5). For Au–Pt nanoalloys, a similar behaviour to Pt nanoparticles was observed, but to a minor extent; that is, THPO increased during the first 24 h and its integral value fluctuated showing a very slight decrease with time, and THPOH continuously increased (Table S4,†Fig. 5). In the case of Pt nanoparticles (Table S4,†Fig. 4, 5), THPO was observed at high concentration at the beginning of the reaction and showed a slight decreasing tendency with time, whereas THPOH was present in low amounts and then began to rise slowly (Fig. 4, Tables S3 and S4†). For all cases, HCOO− and MeOH were observed, predominantly in the case of Pt nanoparticles (Fig. 5).
At this point, the origin of THPOH during the formation of Pt nanoparticles could be further clarified. In the literature, THPOH has been reported to come from THPC34–36 or from THP31–33 in the absence of metals. However, in this study a continuous increase in THPOH with time was observed when neither THPC nor THP but THPO was present in the reaction medium as can be observed in Fig. S6.†
Considering the presence of the different THPC derived compounds when the pH of the THPC solution is varied,38 pH measurements were performed with time (Fig. 7). When NaOH and the Pt precursor were added to the THPC solution, the pH increased up to 11 due to the presence of NaOH (THPO was the only THPC derived compound present in the reaction mixture). Once the nanoparticles started to appear, the pH decreased to 8 (THPO and THPOH were in solution). Finally, during the stabilization process the pH slightly increased above 8. At this point, we can conclude that THPOH must be produced from THPO instead of being formed as a consequence of a pH change, since only THPO was present in the reaction medium (Fig. 6, S6†), in contrast to that observed in the control experiments performed in the absence of NaOH where THPOH is formed from THPC (Fig. 3).38
Two different zones can be distinguished in Fig. 6, before and after the consumption of methanol. When plotting the ratio of THPOH to THPO integral values versus time of data extracted from Fig. 6 (see Fig. S5†), two zones (a and b) with different slopes could be observed within the reaction time (Fig. S5†): zone a surprisingly had a lower slope than zone b and corresponded to reaction times when there was still CH3OH in the reaction medium, whereas zone b had a higher slope and corresponded to reaction times when CH3OH had already disappeared (Fig. 6). Presumably, this fact might be explained by the coordination of THPO by Pt, as shown in Scheme 1, thus representing a source of *CH2OH for the formation of THPOH from THPO.45 In this process two equivalents of THPO are required to form one equivalent of THPOH, justifying the more marked decrease of THPO compared to the increase of THPOH (Fig. 6). Therefore Scheme 1 should represent what is happening in zone b (long reaction times). Moreover, compound marked as (*) (Scheme 1) can continue reacting to form sodium phosphate which in fact, has been detected in the 31P NMR experiments for long reaction times.
Scheme 1 THPOH formation from two equivalents of THPO. The compound marked with (*) was not detected. The product (*) could continue reacting to form sodium phosphate (δ31P = 0.00 ppm), which was detected in some cases especially for very long reaction times. The resulting phosphonic acid would be deprotonated by the NaOH present in the medium. Note that this process represents the formation of THPOH when methanol had already been consumed in the reaction medium (see below), corresponding to Fig. S5,† slope b; and Fig. 6, from 96 hours. |
The process shown in Scheme 1 can only take place for Pt but not for Au nanoparticles since, as in the latter case no evidence of THPOH was observed and THPO continued to increase with time (Table S4†).
Given all the evidence observed from NMR experiments and pH measurements, it is possible to clarify the origin of the different THPC derived compounds and propose that the mechanism of the formation of noble metal nanoparticles using THPC as a starting material is as follows (Scheme 2): as observed during the control experiments, THPC in water is transformed into THP and subsequently into THPO, as also previously reported in certain cases.24,28–39,46 The presence of NaOH increases the rate of conversion of THPC to THP because THPC is not observed when NaOH is added (Fig. 2). When the Pt precursor is added to the reaction mixture (Fig. 3), THP is not observed at the very beginning of the reaction, in contrast to THPC which is observed in high amounts. These two facts indicate that THPC is converted to THP (and this is coordinated to the Pt(0)-complex, thus explaining its absence), releasing one equivalent of HCHO, and then THP forms THPO and releases one equivalent of H2 (Scheme 2),24 a reaction catalysed by the presence of the Pt precursor (Fig. 3). It should be noted that in the excess of NaOH, THPC can be directly transformed into THPO.47
Scheme 2 Proposed mechanism for the formation of Pt nanoparticles. (a) Evolution of THPC in the presence of NaOH. (b) Cannizzaro reaction of formaldehyde. (c) Formation of Pt nanoparticles. (d) Formation of THPOH from THPO and methanol. Importantly, the reaction of THPC to THPOH occurs but only to a low extent. Most of the THPOH comes from THPO due to the activation of the C–H bond by the Pt nanoparticles (step d), as reported.48 In the case of Au nanoparticles, step d cannot be considered (see text below). (e) Additional formation of HCOO− from HCHO. |
Formaldehyde formed in step a undergoes a Cannizzaro reaction, favoured in alkaline medium, to give methanol and formate (Scheme 2b).49 A two-step mechanism for the formation of Pt(0) (Scheme 2c) is proposed. In the first step, methanol that formed in step b reduces Pt4+ to Pt2+, which is corroborated by the yellowish colour of the dispersion.50 In the second step, methanol continues to reduce Pt2+ to Pt0 (black colour of the dispersion) in view of its propensity to form formaldehyde.51 Four equivalents of methanol are required to produce one equivalent of Pt(0). Similarly, previous studies also reported that methanol is the reducing agent in the formation of nanoparticles.52,53 The formation of THPO generates hydrogen, as evidenced by the pressure release when the reaction vial was opened, and also water, as indicated by the increase in the corresponding signal in the 1H NMR spectrum. Note that hydrogen could also participate as a reducing agent according to the literature,54 however it is difficult to estimate the contribution of each reducing agent. Formaldehyde can be easily oxidized to formate due to the presence of oxygen in the medium (step e). This fact justifies that formate does not decrease during the reaction (Fig. 4), and methanol completely disappears.
We postulate that methanol also participates in the formation of THPOH from THPO (step d). This can be explained by the activation of the C–H bond of methanol by platinum as Kandoi et al.48 and others reported. Kandoi et al. described all reaction schemes that take place for methanol decomposition on platinum. The first step of the most predominant pathway starts with C–H bond scission (CH3OH → *CH2OH). This new specie can react with THPO rendering a small amount of THPOH formed during the reaction (Scheme 2, d) which explains the slight decrease of THPO (Fig. 4, 6) and also contributes to the consumption of methanol within time (Fig. 6). Interestingly, the fact that the integral values of methanol plus THPOH match approximately the integral value of formate (Fig. 3b and Table S3†) could corroborate the formation of THPOH from the reaction of THPO with methanol, if we consider that both methanol and formate have been formed from formaldehyde.
This process (THPO to THPOH) is in equilibrium, which explains why the decrease of THPO does not match exactly with the increase of THPOH and that the integral of THPO fluctuates with time, in addition THPOH can also be formed slowly from THPC as mentioned previously.38
Note that formaldehyde (4 eq.) is formed in the reduction of PtCl62− to Pt(0) (Scheme 2c) which under our experimental conditions can undergo again the Cannizzaro reaction rendering methanol and formate, justifying the fact that the latter keeps increasing in contrast to when there is an absence of platinum in the reaction medium where the amounts of formate and methanol remain constant with time (Fig. 4bvs.2b). The higher absolute amount of formate compared to that of methanol (Fig. 2b) could be due to another process that may take place, the oxidation of formaldehyde in air as the reactions are not carried out in an inert atmosphere.
The mechanism of the formation of Au nanoparticles involves the slow conversion of THPC to THP and then to THPO. At the beginning of the reaction THPC is not observed due to the presence of NaOH. On the contrary, THP and THPO are observed, the former with higher amounts (Table S4†). One possible reason for this could be that THP tends to coordinate to Au(I) to form complexes that are kinetically inert in water.55 In addition, no evidence of THPOH was found in these experiments, a fact that may be attributed to the different catalytic activity of Au compared to Pt in the activation of C–H bonds. However, the high catalytic activity of Pt for the activation of C–H and C–C bonds is very well known and makes the activation of the C–H bond of methanol possible.56,57
Considering the large excess of THPC compared to the Pt precursor under our experimental conditions, the observed THPO signal at 4.07 ppm should correspond to free THPO molecules in solution instead of THPO-stabilized nanoparticles. An indirect proof of the presence of the nanoparticles is clearly given by the low integral values of THPO in the solution, as explained above.
Aliquots from the reaction mixture were extracted at different reaction times, transferred to an NMR tube and then analysed by NMR spectroscopy. Samples for longer periods of time (t > 72 h) were analysed from the NMR tube extracted at the end of the reaction (t = 72 h). In situ NMR reaction monitoring was carried out in a 5 mm-NMR tube inside the NMR magnet. The stoichiometric amount of reagents for these experiments was calculated for the reaction volume of 500 μL (standard volume required for NMR measurements). Several 1H NMR experiments were consecutively recorded with the aim of continuously monitor the changes produced during the transformation of the THPC derived compounds and the formation of the nanoparticles.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/d0na00159g |
This journal is © The Royal Society of Chemistry 2020 |