Issue 10, 2020

Linearly polarized lasing based on coupled perovskite microspheres

Abstract

The polarization of lasing, as a fundamental property related to the emission coherence of microlasers, is one of the criteria for a high quality laser beam but has been rarely investigated. Unlike conventional lasers which can be induced by highly polarized seed light or by using a polarizing film, the microlaser for on-chip integrated photonic circuits generally possesses a low degree of polarization due to unpolarized spontaneous emission. Here, we firstly demonstrate that the Vernier effect can be used to improve the degree of polarization from ∼0.2 to 0.78 based on metal halide perovskite microspheres. After coupling, linearly polarized single-mode lasing with a low threshold and high quality can be achieved. In addition, by using the finite element method, the mode distributions of CsPbBr3 microspheres before and after coupling are analyzed systematically and a clear physical diagram of coupled resonances is obtained. Our work clearly suggests that a coupled linearly polarized single-mode microlaser by the Vernier effect would offer a real step closer to the platform for on-chip integrated photonics.

Graphical abstract: Linearly polarized lasing based on coupled perovskite microspheres

Supplementary files

Article information

Article type
Communication
Submitted
30 Oct 2019
Accepted
09 Jan 2020
First published
11 Jan 2020

Nanoscale, 2020,12, 5805-5811

Linearly polarized lasing based on coupled perovskite microspheres

B. Zhou, Y. Zhong, M. Jiang, J. Zhang, H. Dong, L. Chen, H. Wu, W. Xie and L. Zhang, Nanoscale, 2020, 12, 5805 DOI: 10.1039/C9NR09259E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements