Xianlong Cao*abc,
Quanyou Renb,
Youkun Yangb,
Xianglong Houb,
Yongbo Yanb,
Jie Hub,
Hongda Dengb,
Daliang Yub,
Wei Lanb and
Fusheng Panac
aCollege of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
bSchool of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China. E-mail: xianlong@cqust.edu.cn
cNational Engineering Research Center for Magnesium Alloys, Chongqing 400045, China
First published on 25th September 2020
Magnesium-based materials are promising lightweight structural materials due to their excellent properties. However, their extensive application has been severely limited due to their high corrosion susceptibility. The inadequate corrosion resistance of Mg is mainly attributed to the porous and unprotective native surface film formed on Mg in aggressive environments. Here, we demonstrated a new environment-friendly route for the growth of a continuous nesquehonite (MgCO3·3H2O) protective film on the surface of pure Mg metal at a relatively low temperature via an in situ reaction of the Mg surface with gaseous phase CO2 in humid environments. The protective film consists solely of highly crystalline MgCO3·3H2O that is compact and has an umbrella-like structure. Electrochemical tests showed that compared to the untreated Mg substrate, the protective film can effectively improve the corrosion resistance of the substrate by nearly two orders of magnitude. Additionally, a possible formation mechanism of the nesquehonite film on the pure Mg was proposed and the effect of the carbonation time on the film was investigated. This environmentally-friendly surface treatment method is promising for use in the protection of magnesium-based materials.
Recently, the carbonation method has emerged an attractive and promising method for the corrosion protection of Mg metal.2,7,8 Through reaction with the CO2 excited by either a high-energy electron beam or a glow discharge, Wang et al.2,7 carbonated an Mg-based material to create a smooth and dense magnesium carbonate protective film. The inhibition effects of this protective film are superior to those of the anodized coating, and the inhibition performance can be even be as good as that of a micro-arc oxidation coating. Sun et al.8 also investigated the interaction between excited CO2 and Mg substrate under electron beam irradiation and observed a rapid and unique oscillation sublimation process of the Mg metal at room temperature. However, to date, this carbonation method applied to Mg-based materials must rely on activation by either a high-energy electron beam or a glow discharge. Therefore, it is necessary to develop a more facile carbonation method.
Fortunately, an examination of the literature revealed a possible approach for the development of such a facile carbonation method. First, several researchers reported that ambient concentrations of CO2 can inhibit the atmospheric corrosion of pure Mg and Mg alloys.9 The inhibition effect of CO2 is attributed to the formation of slightly soluble Mg hydroxy-carbonates through atmospheric corrosion reactions, providing a somewhat protective film on the Mg surface.9 In addition, it was reported that a continuous and compact lithium carbonate film can form on the surface of a new Mg–Li alloy due to the reaction of lithium oxide reacted with CO2 in the air.10 The carbonate-rich surface film provided considerable inhibition of anodic dissolution kinetics.10,11 However, the protective lithium carbonate only forms on the alloy with a high content of lithium (>11 wt%). While these results show that carbonation on Mg-based materials can be accomplished by chemical and electrochemical reactions even at ambient temperature and pressure, unfortunately, the films formed under these conditions are usually porous, thin and show poor adherence. Interestingly, we also noticed that a protective iron carbonate (FeCO3) film can form through chemical and electrochemical corrosion reactions on the surface of carbon steel used in oil and gas pipelines or tanks in service in wet CO2 systems with high pressure and temperature.12,13 The protective FeCO3 layer can effectively reduce the corrosion rate and prolong the service life of carbon steel.12,13 Therefore, we hypothesize that the control and application of the conditions similar to those found in the operational environment of carbon steel in oil and gas industry will obtain a better protective film on Mg-based materials.
Motivated by the previous results and our hypothesis, in this work, we for the first time demonstrated a new environmentally-friendly carbonation route for the growth of a nesquehonite (MgCO3·3H2O) protective film on the surface of a pure Mg sample via an in situ reaction of the Mg surface with medium-pressure gaseous phase CO2 in humid environments at a relatively low temperature. The possible formation mechanism of this nesquehonite film on the pure Mg surface was also discussed. This carbonation method is facile and green, only involves CO2 and water, and the CO2 gas and the formed solution can be easily recycled.
Fig. 1 (a) XRD pattern of the pure Mg substrate and carbonated pure Mg samples kept in gaseous phase CO2 for different times, and (b) ideal nesquehonite crystal morphology. |
Fig. 2 Macro-morphologies of the untreated (a) and carbonated pure Mg samples in gaseous phase CO2 for 6 (b), 12 (c), 14 (d) and 16 h (e). |
Fig. 3 SEM micrographs of the pure Mg samples carbonated in gaseous phase CO2 for 6 (a), 12 (b), 14 (c) and 16 h (d). |
Fig. 4 SEM micrographs of the pure Mg sample carbonated for 12 h: (a) nesquehonite film, (b) centrepiece zone, (c) grain boundary-like zone, (d) single orthorhombic columnar morphology. |
Compared to the macro-morphologies of the untreated sample (Fig. 2a), all of the carbonated samples display a light brown nesquehonite film (Fig. 2b–e). However, the surface of the sample treated for 6 h has not yet been completely covered by the nesquehonite film, showing some defective area with either grey or black colour, as marked by red solid lines in Fig. 1b and 2a. By contrast, when treated for over 12 h, all of the Mg samples exhibit a continuous and dense nesquehonite film. In addition, we observed that some small humps are present in the film surface, as marked by yellow circles in Fig. 1c, and the SEM micrographs reveal that nesquehonite film developed around a centrepiece, that is the observed humps, creating an umbrella-like structure covering an area with a diameter of even more than 1 mm (Fig. 3a–d and 4b). These “umbrellas” spread over the pure Mg surface and coalesce along their edges that similar to grain boundaries (green dashed lines) (Fig. 4a and c). From the viewpoint of the centrepiece, the nesquehonite crystals exhibit an apparent orthorhombic cross-section that is consistent with its ideal crystal morphology (Fig. 1b), as marked by yellow solid line in Fig. 4d, and elongate along the c-axis to produce a columnar morphology. Although nesquehonite has an orthorhombic appearance (pseudo-orthorhombic), its symmetry is in fact lower than orthorhombic due to the repeated twinning on the [100] plane and is classified as monoclinic.16
The composition determined by energy dispersive spectrometer (EDS) spectra for the sample treated for 12 h (Fig. 5) indicates that the film only contains C, Mg and O and no chemical impurities are present. The contents (in wt% and at%) of all of the elements detected by EDS analysis are listed in the inset table in the spectra. It is observed that the C:O:Mg atomic ratio is approximately 1:6:1 (nominal atomic ratio of MgCO3·3H2O), consistent with the XRD results. EDS mapping shows the existence of Mg, O and C, and their uniform distribution on the Mg surface (Fig. 6), further proving that the formed film is pure nesquehonite.
In addition, a cross-section of the pure Mg sample treated for 12 h was displayed in Fig. 7. Fig. 7a clearly demonstrated that the nesquehonite film has a thickness of 25–150 μm. The film was directly generated on the surface of the pure Mg substrate and was closely attached to the substrate. The cross-section of the film also showed a columnar feature corresponding to the aforementioned umbrella-like structure profile. In particular, the high-magnification images of zones D (Fig. 7c) and E (Fig. 7d) correspond to the “umbrella” edge profile and the “umbrella” centrepiece profile, respectively. The cross-section morphologies further verified the umbrella-like structure with lamination characteristics and revealed the growth direction of the film. It is observed that the film showed some interior micro-cracks, which was possibly related to the growth characteristics of the nesquehonite columnar crystal, the CO2 transport or the release of hydrogen gas during the film formation. The substrate surface beneath the nesquehonite film was clearly uneven, proving the existence of a chemical and/or electrochemical reaction process related to the corrosion dissolution of the substrate during the film formation. The EDS spectra (Fig. 7b) of different zones (A, B and C) and the EDS line scan along the red scan line (Fig. 7a) clearly demonstrate the existence of three distinct zones, that is the Mg substrate, nesquehonite film and resin. For the film zone, three element peaks of Mg, O and C are observed, providing an additional confirmation for the existence of nesquehonite and the formation and possible thickness of the film.
Upon encountering the evaporated and condensed water molecules adsorbed on the pure Mg surface, CO2 is hydrated to produce carbonic acid (H2CO3):13
CO2(g) + H2O(aq) ↔ H2CO3(aq) | (1) |
H2CO3(aq) ↔ H+(aq) + HCO3−(aq) | (2) |
HCO3−(aq) ↔ H+(aq) + CO32−(aq) | (3) |
Localized electrochemical reactions including the hydrogen evolution reaction and electrochemical dissolution of magnesium occur on the Mg surface according to either:17
Mg(s) → Mg+(aq) + e− | (4) |
2Mg+(aq) + 2H+(aq) → Mg2+(aq) + H2↑(g) | (5) |
2H+(aq) + 2e− → H2(g) | (6) |
Mg(s) → Mg2+(aq) + 2e− | (7) |
Then, the Mg2+ and CO32− ions combine to form MgCO3·3H2O crystal nuclei according to:
Mg2+(aq) + CO32−(aq) + 3H2O(aq) → MgCO3·3H2O(s) | (8) |
With the progress of these chemical and electrochemical reactions (reactions 1–8), the MgCO3·3H2O crystal nuclei increasingly form and a high density of nucleation sites appear. Subsequently, the Mg substrate is gradually covered by tiny crystal grains at an early stage of film formation. Initially, the grains are quite small and their high-index planes are exposed, resulting in the high surface energy of the grain and leading some of the grains to agglomerate and form crystal centrepieces. Once the centrepieces are formed, each single crystal particle in the agglomeration grows according to its own crystal environment, and the oriented growth of the crystal occurs such that the crystal planes with fast growth rate are connected to each other. With increasing reaction time, the further growth of these grains is almost undisturbed until neighbouring grains approach each other. As soon as two as-grown umbrella-like crystals are in close contact with each other, the horizontal growth is terminated, and the between-the-“umbrellas” coalescence proceeds until a continuous and compact nesquehonite film successfully covers the entire surface of the Mg substrate. Fig. 8 illustrates the proposed formation mechanism of the nesquehonite film on the pure Mg substrate.
Fig. 9 Open-circuit potential evolution of the untreated and treated pure Mg samples in gaseous phase CO2 during immersion in 3.5 wt% NaCl solution. |
For the carbonated pure Mg samples, the OCP evolution is characterized by a sharp drop during the first 50–200 seconds of immersion (Fig. 9). The OCP reaches a minimum value and then begins to relatively slowly increase towards more positive values, approaching a stable plateau at approximately −1.75 to −1.81 V after immersion in the 3.5 wt% NaCl solution for 600 s. The drop of the OCP values and their minimum may be related to the cathodic inhibition effect of the nesquehonite film, whereas the rise towards more positive values means that the film starts to gradually become saturated with the NaCl electrolyte. This may be due to the presence of micro-cracks in the interior of the film, and the initiation of the substrate surface oxidation; however, no hydrogen release was observed during the experiment. Furthermore, it is observed from Fig. 9 that the stable OCP plateau becomes more negative with increasing carbonation time. Overall, the OCP evolution indicates that compared to the untreated sample, the nesquehonite film can delay the potential negative shift and provides corrosion protection through a cathodic inhibition mechanism.
Fig. 10 Potentiodynamic polarization plots of the untreated and treated pure Mg after immersion for 120 min in 3.5 wt% NaCl solution. |
Furthermore, we also considered the breakdown potential of the Mg metal in the NaCl solution because it can be used as an indication of the ability of its protective layer to suppress local corrosion destruction.19 Once the protective layer is broken down through its defective sites, the underlying Mg substrate will be directly exposed to the aggressive environment. While for the untreated Mg sample, no clear breakdown potential is observed, for the carbonated Mg sample, a significant breakdown process of the nesquehonite film is observed from −1.50 V to −1.40 V with an obvious current fluctuation. In particular, for potentials that are more positive than −1.50 V where the current fluctuation is significant (as illustrated in the inset in Fig. 9), the slopes of the anodic branches for all of the carbonated samples decrease, implying that the corrosion becomes easier. When the potential reaches −1.0 V, the anodic branches for all samples completely coincide, indicating that their anodic behaviours are identical for these conditions.
Among the EIS characteristics of a protective film or coating on the metal surface, the low-frequency Bode impedance (|Z|) and the diameter of capacitive loop at high frequencies are important and useful electrochemical parameters for characterizing the corrosion resistance of the film or coating. A larger |Z| or capacitive loop generally implies a better corrosion protection performance.21 From Fig. 11, it is observed that both the capacitive loop diameter and Bode impedance |Z| of the carbonated samples increase significantly compared to the pure Mg substrate and increase with the carbonation time in gaseous CO2. This provides a demonstration of the formation of the nesquehonite protective film and its beneficial effect on the enhancement of the corrosion resistance of the pure Mg. In addition, while the maximum phase angle at the high and medium frequencies of the untreated sample is approximately 25°, the high- and medium-frequency phase angle peaks of the carbonated samples appear at approximately 70° and become broader and smoother, also proving the presence of a dense and continuous film serving as an effective barrier.
To further explain the degradation process of the Mg samples, the EIS spectra for the untreated and treated samples were fitted by two proposed equivalent electrical circuits as illustrated in Fig. 12. The untreated pure Mg sample was fitted according to the equivalent circuit presented in Fig. 12a, where Rs is the resistance of the solution between the work electrode and the reference electrode, Rox and Cox are the film resistance and double layer capacitance correlated with the barrier property and capacitance of the magnesium hydroxide or oxide non-protective film on the Mg surface, respectively, while Rdl and Cdl correspond to the charge transfer resistance and double layer capacitance at the Mg/electrolyte corroding interface, respectively. L and RL represent the inductance and low-frequency loop resistance, respectively. In the equivalent circuit of the carbonated samples (Fig. 12b), Rs also represents the resistance of the solution between the work electrode and the reference electrode, and Rf and CPEf are the corrosion resistance and constant phase element correlated with the barrier property and capacitance of the nesquehonite protective film on the Mg surface, while Rdl and CPEdl are related to the charge transfer resistance and double layer capacitance at the Mg/electrolyte corroding interface, respectively.
Fig. 12 Equivalent electrical circuits of (a) the untreated and (b) treated pure Mg samples in gaseous phase CO2 after immersion for 60 min in a 3.5 wt% NaCl solution. |
The fitted EIS results of the untreated and treated samples obtained using the proposed equivalent electrical circuits are listed in Tables 1 and 2, respectively. The fitted results demonstrate that the polarization resistance (Rp = Rf + Rct) of the carbonated pure Mg samples increases by nearly two orders of magnitude compared to that of the untreated sample. The EIS results are in good agreement with the potentiodynamic polarization curve results, further verifying that the protective nesquehonite film can offer better corrosion protection for the Mg metal.
Rs (Ω cm2) | Cox (F cm−2) | Rox (Ω cm2) | Cdl (F cm−2) | Rdl (Ω cm2) | L (H cm−2) | RL (Ω cm2) | Rp (Ω cm2) | Chi-squared |
---|---|---|---|---|---|---|---|---|
27.55 | 1.29 × 10−5 | 9.16 | 8.40 × 10−5 | 96.32 | 251.60 | 45.97 | 59.51 | 1.86 × 10−3 |
Time (h) | Rs (Ω cm2) | CPEf (Ω−1 s−n cm−2) | n | Rf (Ω cm2) | CPEdl (Ω−1 s−n cm−2) | n | Rdl (Ω cm2) | Rp (Ω cm2) | Chi-squared |
---|---|---|---|---|---|---|---|---|---|
6 | 31.46 | 3.72 × 10−6 | 0.87 | 2152.00 | 7.85 × 10−4 | 0.62 | 896.20 | 3048.20 | 1.99 × 10−3 |
12 | 30.76 | 5.13 × 10−6 | 0.87 | 2444.00 | 8.59 × 10−4 | 0.60 | 1582.00 | 4026.00 | 1.17 × 10−3 |
14 | 32.77 | 2.64 × 10−6 | 0.90 | 2281.00 | 7.21 × 10−4 | 0.55 | 1665.00 | 3946.00 | 1.67 × 10−3 |
16 | 31.07 | 1.54 × 10−6 | 0.90 | 2903.00 | 5.43 × 10−4 | 0.55 | 1382.00 | 4285.00 | 2.10 × 10−3 |
Overall, on the basis of the electrochemical results, it can be concluded that gaseous phase CO2 treatment can produce a highly protective nesquehonite film on pure Mg, that shields the magnesium metal from an aggressive attack by its aqueous environment.
This journal is © The Royal Society of Chemistry 2020 |