Lin Sun‡
a,
Min Zhao‡a,
Yanhui Zhaoa,
Xue Jianga,
Miao Wang*b,
Yixin Zhanga and
Chunjie Zhao*a
aSchool of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China. E-mail: lab433@163.com
bSchool of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
First published on 11th August 2020
Shaoyao Gancao decoction (SGD), a well-known Chinese herbal formula, has been used to treat liver injury for a long time. In this study, chemical profiles of SGD were identified using ultra high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS/MS). Liquid chromatography was performed on a C18 column (150 mm × 2.1 mm, 1.8 μm); the mobile phase comprised 0.1% formic acid (A) and acetonitrile (B). We then characterized 73 chemical compounds; the primary constituents in SGD included phenols and monoterpenes (in Paeoniae Radix Alba), triterpene saponins, and flavonoids (in Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle). Thus, this study provides a basis for further study on SGD and is expected to be useful for rapidly characterizing constituents in other traditional Chinese herbal formulations.
Initially, Shaoyao Gancao decoction (SGD) was described in Shang Han Lun, a clinical TCM book written by Zhang Zhongjing in the Eastern Han Dynasty.3 It contains two herbs: Paeoniae Radix Alba and Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle. The SGD was a classical formula of TCM and extensively used for treating febrile diseases such as relief of nourishing liver, relaxing spasm, and relieving pain.4
At present, few studies have focused on the chemical components of SGD.5 To improve the detection range and sensitivity of previous method, researchers are increasingly using UHPLC-FT-ICR-MS, which is a type of powerful qualitative screening platform with a high mass resolving power that demonstrates powerful separation and can generate accurate molecular measurements. For example, using this method, Wang et al. characterized 33 chemical compounds in Cortex Fraxini and Guan et al. characterized 120 chemical compounds in Sijunzi decoction.6,7
In our work, we selected UHPLC-FT-ICR-MS to systematically characterize the chemical profiles of SGD. This study is thus able to provide a substantial base and provide considerable information for SGD-related pharmacological research.
Mass spectra analysis was conducted on a Bruker Solarix 7.0 T FT-ICR-MS system (Bruker, Germany) and a Bruker Compass-Hystar workstation (Bruker, Germany) using both positive and negative electrospray ionization (ESI) modes, followed by optimized conditions: nebulizer gas pressure of 4.0 bar; dry gas flow rate of 8 L min−1; dry gas temperature of 200 °C; ion accumulation time of 0.15 s; time of flight of 0.6 ms; capillary voltage of 4.5 kV; and endplate offset of 500 V. The recording of the full-scan mass spectrum data was performed between m/z 100 and 3000. In respect to the auto MS/MS mode, the selection of both MS/MS boost and MS/MS isolation was made; moreover, the range of collision power was maintained between 10 and 30 eV for MS/MS experimentations.
Fig. 1 The base peak ion chromatograms (BPC) of SGD in both positive (A) and negative (B) ion modes and the corresponding compounds (C). |
Fig. 2 The possible fragmentation pathways of the typical compounds. (A) Albiflorin, (B) glucogallin, (C) glycyrrhizic acid, (D) liquiritin. |
No. | tR (min) | Identification | Formula | Molecular weight | Ion mode | MS (m/z) | ppm | MS/MS (m/z) |
---|---|---|---|---|---|---|---|---|
a Ps: 1–30 from Paeoniae Radix Alba; 31–73 from Glycyrrhizae Radix et Rhizoma Praeparata. | ||||||||
1 | 3.43 | Citric acid | C6H8O7 | 192.0270 | [M + H]+ | 193.03428 | −0.55 | 191.05401; 111.00913 |
[M − H]− | 191.01973 | 0.44 | 133.01330 | |||||
2 | 6.2 | Gallic acid | C7H6O5 | 170.0215 | [M + H]+ | 171.0288 | 5.15 | 126.02387 |
[M − H]− | 169.01425 | 0.54 | 125.02453; 108.02271 | |||||
3 | 6.72 | Debenzoyl paeoniflorin | C16H24O10 | 376.1369 | [M + H]+ | 377.14422 | 1.62 | 375.12803; 345.11810; 195.06531; 139.07233 |
4 | 7.43 | 1-O-β-D-Glucopyranosyl-paeonisuffrone | C16H24O9 | 360.1420 | [M + H]+ | 361.14931 | 1.49 | 181.08418; 163.01784; 127.01413 |
5 | 11.93 | Glucogallin | C13H16O10 | 332.0743 | [M + H]+ | 333.08162 | 1.37 | 207.05048; 125.02387 |
[M − H]− | 331.06707 | −0.11 | 313.05596; 211.02426; 169.01370; 125.02387 | |||||
6 | 12.97 | 6-O-β-D-Glucopyranosyl lactinolide | C16H26O9 | 362.1576 | [M − H]− | 361.15041 | 0.28 | 185.11777; 163.06065; 113.06025 |
7 | 15.66 | Ethyl gallic acid | C9H10O5 | 198.0528 | [M + H]+ | 199.0601 | 3.32 | 125.10300 |
8 | 17.64 | Mudanpioside F | C16H24O8 | 344.1471 | [M − H]− | 343.13981 | 1.1 | 179.05556; 165.09115 |
9 | 24.29 | Galloylpaeoniflorin | C30H32O15 | 632.1741 | [M + H]+ | 633.1814 | 1.00 | 631.16613; 613.15570; 509.12952; 491.11895; 463.12404 |
10 | 24.48 | 1′-O-Benzoylsucrose | C19H26O12 | 446.1424 | [M − H]− | 445.13515 | 0.07 | 179.14800; 132.04226; 121.02895 |
11 | 24.87 | Isomaltopaeoniflorin | C29H38O16 | 642.2159 | [M + H]+ | 643.22326 | 1.49 | 643.22326; 191.11500 |
12 | 25.22 | Paeonol | C9H10O3 | 166.0630 | [M − H]− | 165.05572 | 0.59 | 165.05572 |
13 | 25.54 | Paeonilactone B | C10H12O4 | 196.0735 | [M + H]+ | 197.08084 | 0.43 | 133.0662; 105.0688; 103.0545 |
14 | 25.56 | Paeonilactone C | C17H18O6 | 318.1103 | [M + H]+ | 319.11761 | 0.34 | 183.06573; 135.04460 |
15 | 26.92 | Oxypaeoniflorin | C23H28O12 | 496.1581 | [M + H]+ | 497.16535 | 1.07 | 267.08286; 180.07864; 163.06065; 137.02837 |
16 | 28.75 | Schaftoside | C26H28O14 | 564.1479 | [M + H]+ | 565.15518 | 1.41 | 565.15518; 501.13969; 163.03952 |
[M − H]− | 563.14063 | 1.16 | 563.14063; 499.1404 | |||||
17 | 31.1 | Palmitic acid | C16H32O2 | 256.2402 | [M + H]+ | 257.08084 | 1.19 | 143.07120; 113.11303 |
18 | 31.33 | Paeoniflorigenone | C17H18O6 | 318.1103 | [M + H]+ | 319.11761 | 1.29 | 137.05818; 133.06662; 105.03324 |
19 | 31.35 | Albiflorin | C23H28O11 | 480.1631 | [M + H]+ | 481.17044 | 0.53 | 197.08113; 151.07255; 133.02649; 105.01342 |
[M − H]− | 479.15587 | 0.67 | 435.16551; 357.11856; 121.02895 | |||||
20 | 31.85 | Kaempferitrin | C27H30O14 | 578.1635 | [M + H]+ | 579.17083 | 0.49 | 623.15923; 315.05121; 314.04118; 299.01050 |
21 | 38.83 | Lactiflorin | C23H26O10 | 462.1526 | [M + H]+ | 463.15987 | 1.59 | 179.07100; 151.07186; 135.08121 |
[M − H]− | 461.14532 | 0.45 | 461.14532; 285.06104; 121.08956 | |||||
22 | 37.45 | Paeonisuffrone C | C10H14O4 | 198.0892 | [M − H]− | 197.08084 | 0.6 | 197.08084 |
23 | 37.53 | Paeoniflorin | C23H28O11 | 480.1631 | [M + H]+ | 481.17044 | 0.8 | 481.17044; 451.16042; 375.12972; 329.12364; 123.04460 |
24 | 40.58 | Benzoyloxypaeoniflorin | C30H32O13 | 600.1842 | [M − H]− | 599.17701 | 0.7 | 599.17618; 509.19525; 491.23538; 293.21011; 137.10284 |
25 | 40.59 | Mudanpioside D | C24H30O12 | 510.1737 | [M − H]− | 509.16645 | 0.81 | 509.16645; 463.15486; 121.02994 |
26 | 44.4 | Hederagenin | C30H48O4 | 472.3553 | [M + H]+ | 473.36254 | 1.45 | 426.31340; 251.20111; 168.11503 |
27 | 46.06 | Benzoylpaeoniflorin | C30H32O12 | 584.1893 | [M + H]+ | 585.19665 | 1.33 | 585.19665; 463.16042; 433.14986; |
28 | 49.25 | Benzoyl paeonifloride | C30H32O12 | 584.1893 | [M + H]+ | 585.19665 | 0.99 | 585.19665; 567.18664; 463.45900 |
29 | 50.79 | Astrantiagenin D | C30H46O4 | 470.3396 | [M + H]+ | 471.34689 | 1.04 | 234.16198; 209.45415 |
30 | 52.15 | Oleanolic acid | C30H48O3 | 456.3604 | [M + H]+ | 457.36762 | 1.17 | 411.28992; 203.16068; 153.15942; |
31 | 2.01 | Gentiobiose | C12H22O11 | 342.1161 | [M − H]− | 341.10894 | 0.29 | 341.10894; 221.06613; 179.05556; 161.04500 |
32 | 23.43 | Liquiritigenin-7,4-diglucoside | C27H32O14 | 580.1791 | [M − H]− | 579.17193 | 1.66 | 579.17193; 417.11856; 253.05008 |
33 | 23.59 | Liquiritin | C21H22O9 | 418.1263 | [M − H]− | 417.11911 | 0.26 | 255.06573; 153.05070; 135.00822; 119.03231 |
34 | 26.07 | Vicenin-2 | C27H30O15 | 594.1584 | [M + H]+ | 595.16575 | 0.85 | 595.16575; 451.14517 |
25.97 | [M − H]− | 593.15119 | 1.31 | 593.15119; 449.12952; 363.12912 | ||||
35 | 28.75 | Schaftoside | C26H28O14 | 564.1479 | [M + H]+ | 565.15518 | 1.41 | 446.11564; 431.10298; 401.09589 |
[M − H]− | 563.14063 | 1.16 | 403.10291; 271.05008 | |||||
36 | 30.22 | Choerospondin | C21H22O10 | 434.1213 | [M − H]− | 433.11249 | −0.12 | 282.11643; 271.06593; 152.01479 |
37 | 31.7 | Pinocembrin | C15H12O4 | 256.0735 | [M + H]+ | 257.08084 | 1.96 | 257.08084; 108.02113 |
[M − H]− | 255.06628 | 0.16 | 255.06628; 150.03169; 106.04186 | |||||
38 | 30.88 | Glucoliquiritin apioside | C32H40O18 | 712.2214 | [M + H]+ | 713.22874 | 0.94 | 551.17647; 459.70586; 255.13625 |
39 | 31.12 | Licoagroside A | C23H24O12 | 492.1268 | [M − H]− | 491.11950 | 0.88 | 327.07693; 164.03532; 148.03643 |
40 | 31.66 | Liquiritin apioside | C26H30O13 | 550.1686 | [M + H]+ | 551.17592 | 0.92 | 551.17592; 257.09195; 137.02387 |
[M − H]− | 549.16136 | 1.24 | 549.16136; 417.17138; 255.13727; 135.00822 | |||||
41 | 30.95 | Liquiritigenin | C15H12O4 | 256.0735 | [M + H]+ | 257.08084 | 1.19 | 257.08084; 135.09800 |
42 | 31.10 | Isoliquiritigenin | C15H12O4 | 256.0735 | [M + H]+ | 257.08084 | 1.19 | 163.06592; 150.03169; 106.12400 |
43 | 31.24 | Trifolirhizin | C22H22O10 | 446.1213 | [M + H]+ | 447.12857 | 1.15 | 285.07128; 229.08474; 149.02177 |
44 | 31.53 | Neoliquiritin | C21H22O9 | 418.1263 | [M + H]+ | 419.13366 | 0.33 | 419.13366; 257.08138 |
[M − H]− | 417.1186 | 0.13 | 417.11856; 255.06573 | |||||
45 | 31.85 | Violanthin | C27H30O14 | 578.1635 | [M + H]+ | 579.17083 | 0.49 | 579.17083; 549.16082; 495.12912 |
46 | 36.34 | Naringenin-7-O-glucoside | C21H22O10 | 434.1212 | [M − H]− | 433.11402 | 1.9 | 433.11402; 271.06065 |
47 | 37.53 | Albiflorin | C23H28O11 | 480.1631 | [M + H]+ | 481.17044 | 0.82 | 481.17044; 451.44800; 359.31451; 329.12364 |
48 | 40.13 | Ononin | C22H22O9 | 430.1264 | [M + H]+ | 431.13366 | 0.46 | 323.07669; 179.05556; 144.02113; 107.04969 |
49 | 40.16 | Pallidiflorin | C16H12O4 | 268.0735 | [M + H]+ | 269.08084 | 0.66 | 269.08084; 254.05791; 241.05008; 181.06534 |
[M − H]− | 267.06628 | 0.22 | 267.06628; 252.04226; 223.03952 | |||||
50 | 40.25 | Isoliquiritin apioside | C26H30O13 | 550.1686 | [M + H]+ | 551.17592 | 0.92 | 419.13421; 255.06572; 137.04460 |
[M − H]− | 549.16136 | 1.24 | 549.16082; 431.11895; 415.16042 | |||||
51 | 40.98 | 5,7-Dihydroxyflavone | C15H12O4 | 256.0735 | [M − H]− | 255.06628 | 0.46 | 255.06628; 135.03954; 119.04960 |
52 | 41.06 | Licochalcone B | C16H14O5 | 286.08412 | [M − H]− | 285.07685 | 0.15 | 255.07891; 193.05761; 165.06538 |
53 | 43.22 | Licorice-saponin O4 | C54H84O24 | 1116.5352 | [M + H]+ | 1117.5425 | 0.57 | 516.34509; 327.32421; 192.02700; 189.16433 |
54 | 44.05 | Echinatin | C16H14O4 | 270.08921 | [M + H]+ | 271.09649 | 1.14 | 239.07549; 149.06349; 121.03782 |
55 | 44.23 | Uralsaponin T | C48H74O19 | 954.48240 | [M + H]+ | 955.48899 | 0.75 | 779.44623; 458.35522; 179.04616 |
56 | 44.46 | Uralsaponin P | C42H64O16 | 824.41944 | [M + H]+ | 825.42671 | 1.04 | 663.36548; 487.33574; 165.06255 |
57 | 45.46 | Licorice-saponin M3 | C48H74O19 | 954.4824 | [M + H]+ | 955.48971 | 1.32 | 955.48971; 517.23599; 366.04062; 163.06065 |
58 | 45.84 | Uralsaponin F | C44H64O19 | 896.4041 | [M + H]+ | 897.41146 | 0.7 | 721.14563; 545.33269; 527.88076; 467.33254; 421.11257; 497.88210; 375.33245 |
[M − H]− | 895.3969 | 1.81 | 719.36098; 543.11527; 525.35432; 465.88908; 419.44671; 495.54490; 373.32157 | |||||
59 | 47.3 | 22-Acetoxyl-glycyrrhizin | C44H64O18 | 880.4092 | [M + H]+ | 881.4165 | 1.53 | 705.13564; 529.11253; 518.00490; 451.33235; 405.44267 |
60 | 47.6 | Licorice-saponin G2 | C42H62O17 | 838.3986 | [M + H]+ | 839.40598 | 0.57 | 839.40598; 663.35370; 487.37913 |
[M − H]− | 837.39142 | 0.6 | 837.39142; 661.12531; 485.90786; 351.11236 | |||||
61 | 48.42 | Licorice-saponin A3 | C48H72O21 | 984.4565 | [M + H]+ | 985.46389 | 0.23 | 985.46389; 823.88097; 647.32446 |
[M − H]− | 983.44933 | 0.3 | 983.44933; 821.57765; 645.33542; 351.11676 | |||||
62 | 48.49 | Uralsaponin N | C42H62O17 | 838.3987 | [M + H]+ | 839.40598 | 0.57 | 663.37644; 487.32988; 179.05516 |
63 | 48.91 | Licorice-saponin B2 | C42H64O15 | 808.4244 | [M + H]+ | 809.43180 | 1.13 | 809.43180; 633.40026; 439.39439 |
64 | 49.28 | Formononetin | C16H12O4 | 268.0735 | [M − H]− | 267.06628 | 0.54 | 267.06628; 252.04226; 195.04460 |
65 | 50.14 | 22-β-Acetoxylglyrrhaldehyde | C44H64O17 | 864.4142 | [M + H]+ | 865.42163 | −0.33 | 689.37723; 513.34358; 179.04966 |
[M − H]− | 863.40707 | 2.76 | 481.33178; 353.07200; 193.03483 | |||||
66 | 50.76 | Glycyrrhizic acid | C42H62O16 | 822.4037 | [M + H]+ | 823.41106 | 1.57 | 647.37952; 471.34743; 425.35761; 407.33922 |
67 | 50.79 | Glycyrrhetinic acid | C30H46O4 | 470.3396 | [M + H]+ | 471.34689 | 1.04 | 339.26538; 189.16722; 137.13835 |
68 | 54.41 | Licorice-saponin K2 | C42H62O16 | 822.4037 | [M + H]+ | 823.41106 | 1.08 | 823.41106; 647.82600; 471.70200 |
[M − H]− | 821.39651 | 1.37 | 821.39651; 646.55342 | |||||
69 | 52.84 | 3′-Methoxyglabridin | C21H22O5 | 354.1467 | [M − H]− | 353.13945 | 0.27 | 353.13945; 338.15542; 147.04734 |
70 | 53.16 | Licorice-saponin H2 | C42H62O16 | 822.4037 | [M + H]+ | 823.41106 | 1.08 | 823.41106; 647.37952; 471.34743 |
71 | 54.23 | Licorice-saponin J2 | C42H64O16 | 824.4194 | [M + H]+ | 825.42671 | 1.53 | 825.42671; 649.39517; 455.40456 |
[M − H]− | 823.41216 | 0.59 | 823.41216; 647.37952; 193.03483 | |||||
72 | 53.65 | Uralsaponin C | C42H64O16 | 824.4194 | [M + H]+ | 825.42671 | 1.53 | 649.39517; 473.36309; 455.35252; 437.34196 |
73 | 53.96 | Glycycoumarin | C21H20O6 | 368.1259 | [M − H]− | 367.11871 | 0.3 | 367.11817; 296.27800; 369.13811; 313.07121; 285.07630 |
SGD is a classical formula of traditional Chinese medicine that is extensively used in the clinic due to its anti-inflammatory, immunoregulatory, analgesic, antidepression, hepatoprotective and neuroprotective effects.12 Moreover, there is a wealth of study on the pharmacological effects of certain active components in the Paeoniae Radix Alba and Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle. This study revealed that monoterpenes and several phenols (in Paeoniae Radix Alba) and the triterpene saponins and flavonoids (in Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle) constituted the key ingredients in SGD. Some of these chemical components have been reported to be the active ingredients in SGD.8,10,13,17,18 For example, paeoniflorin was reported to have anti-inflammatory, hepatoprotective and neuroprotective effects.19,20 Albiflorin was shown to be both anti-inflammatory and antioxidant.9,21 Polyphenol was reported to play a role in antioxidant and antiviral activity. Pentagalloylglucose was shown to have anti-inflammatory, anti-allergic, antitumor, antiviral and antibacterial effects. Paeonol was reported to have anti-inflammatory, antitumor, anti-allergic, antioxidant activities, along with cardiovascular and neuroprotective effects.22 Liquiritin had antidepressive and neuroprotective effects.23,24 Liquiritigenin had been reported to exhibit anti-inflammatory effect.25 Saponins from liquorice demonstrated anti-inflammatory, antiarrhythmia and hepatoprotective effects.26,27 To better understand the major functional compounds and the mechanism of SGD, additional research is required. This study provides a good basis for identifying the prototype components and metabolites in SGD, which can better illustrate its medicinal value.
BPC | Base peak ion chromatograms |
EIC | Extracted ion chromatograms |
SGD | Shaoyao Gancao decoction |
TCM | Traditional Chinese medicine |
UHPLC-FT-ICR-MS/MS | Ultra high-performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry |
Footnotes |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra04701e |
‡ Co-first authors. |
This journal is © The Royal Society of Chemistry 2020 |