Guohua Donga,
Kun Langa,
He Ouyangc,
Wenzhi Zhang
*a,
Liming Baia,
Shijie Chena,
Zhuanfang Zhang
a,
Yueyue Gao*b,
Zhonghua Mua and
Xiaodan Zhaoa
aCollege of Chemistry and Chemical Engineering, Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 160006, P. R. China. E-mail: wenzzhang1968@163.com
bKey Laboratory of Photovoltaic Materials, Henan University, Qiqihar 151001, P. R. China
cCollege of Environmental and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
First published on 10th September 2020
Nitrogen/phosphorus-doped carbon dots (N, P-CDs) with a quantum yield as high as 76.5% were synthesized by carbonizing maize starch via a facile ethanol solvothermal approach. Transmission electron microscopy (TEM) measurement shows that the as-prepared N, P-CDs displayed a quasi-spherical shape with a mean size of ca. 2.5 nm. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy disclosed the presence of –OH, –NH2, –COOH, and –CO functional groups over the surface of N, P-CDs. On the basis of excellent fluorescent properties with strong blue fluorescence emission at 445 nm upon excitation at 340 nm, these N, P-CDs were adopted as a fluorescent probe towards the effective detection of Fe3+ ions in water. The limit of detection (LOD) was as low as 0.1 μmol L−1 and showed a better linear relationship in the range of 0.1 ∼ 50 μmol L−1. In conclusion, these synthesized N, P-CDs can be efficiently used as a promising candidate for the detection of Fe3+ ions in some practical samples.
For the green synthesis of CDs, one of the cost-effective and eco-friendly carbon sources is the natural biomass materials, such as various fruit juices, grass, plant leaves, chitosan and sweat pepper, kitchen wastes, etc.3,8–12 However, for most of the synthesis of CDs, this type of green materials commonly suffers from serious bottleneck such as time consuming process, toxic organic solvents, and especially the low fluorescence quantum yield of the final CDs, etc.3,13,14 Therefore, for improving the fluorescence properties, many efforts have been devoted to the modulation and optimization of the preparation routes of CDs derived from the natural biomass materials, such as doping with other functional materials and surface modification and passivation. Among them, heteroatoms doping is a facile and effective strategy for further modulating the fluorescence properties of the biomass-based CDs. For example, N doped CDs can be prepared by utilizing both of the folic acid and Chinese yam as the source of carbon and nitrogen, respectively.15 Meanwhile, the fluorescence quantum yield as high as 25% can be confirmed for the co-doped CDs with nitrogen and sulfur (abbreviated as N, S/C-dots).16
Similar with other metal ions such as Na+, K+, Ca2+, Zn2+ and Cu2+, Fe3+ ion is one of the most necessary elements in human body and other biological systems.17,18 Its excess or deficiency will result in different biological disorders, such as the eonian loss of motor skills and Parkinson's and Alzheimer's diseases, etc.17,19 Thus, it is extremely necessary for periodically monitoring the Fe3+ or other metal ions to investigate the physiological functions or diagnose and prevent diseases. In the past few years, many effective techniques have been reported for recognizing the ions with low concentrations, for instance gold nanoparticles, electrochemical methods, photonic crystals, luminescence, holography, etc.17,20 However, these techniques commonly suffer from many undesired disadvantages, such as high-cost of the raw materials, complexity of the material fabrication, inflexible use and detailed data analysis and so on. Actually, the above-mentioned CDs with many fascinating properties such as bio-compatibility, low-cytotoxity, good dispersibility in any solvents and photostability can be the perfect candidate for the selective and sensitive detection of the Fe3+.21–23
Maize is the third most important worldwide agricultural crop species for satisfying the human and animal nutrition requirements. Thus, there are enough raw materials for the exploration of the CDs together with its potential application. Herein, we developed a scalable and facile synthesis of nitrogen and phosphorus co-doped CDs (N, P-CDs) via the alcohol solvothermal method from widespread maize starch. TEM measurement demonstrated that the synthesized N, P-CDs showed quasi-spherical shape with mean size of ca. 2.5 nm. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed the presence of –OH, –NH2, –COOH, and –CO functional groups over the surface of N, P-CDs. Furthermore, the N, P-CDs displayed excellent fluorescent properties with strong blue fluorescence emission at 445 nm upon excitation at 340 nm. Finally, the N, P-CDs were adopted as a fluorescent probe towards the effective detection of Fe3+ ions in water by fluorescence spectroscopy. The limit of detection (LOD) was as low as 0.1 μmol L−1, which is far lower than that of the concentration value proposed by World Health Organization (WHO).
![]() | ||
Fig. 1 Schematic illustration of synthesis of N, P-CDs from maize starch via solvothermal treatment and its visible blue emission under UV of 365 nm. |
![]() | ||
Fig. 2 (A) The TEM image and (B) the statistical histogram of the particle size distribution for the synthesized N, P-CDs, inset of Fig. 1A is the magnification of TEM image. |
The surface functional groups of the synthesized N, P-CDs were investigated by FT-IR spectroscopy. As illustrated in Fig. 3A, the band at 3025–3674 cm−1 is broad and strong, which might be ascribed to the overlap of –OH/–NH stretching bands. Otherwise, a sharp band at 2924 cm−1 accompanied with a shoulder band at 2850 cm−1 was observed, which should be assigned to the C–H stretching of CC moiety present in the core of the N, P-CDs. The vibrational absorption peaks at 1623 and 1719 cm−1 corresponded to the (O, N)–CO/C
C stretching vibration, confirming the presence of an unsaturated aromatic rings shaped with graphitic structure. Moreover, the absorption peaks around 607 cm−1, 1047 cm−1, 1119 cm−1 are devoted to the phosphate group (P
O or P–O). The result confirmed the synthesized N, P-CDs were packaged with different functional groups, which could improve the aqueous solubility of N, P-CDs for potential applications in the bio-imaging and sensor fields.30,31 Moreover, as illustrated in Fig. 3B, two peaks with low intensity can be easily observed in the Raman spectrum of the prepared N, P-CDs. The peak at around 1580 cm−1 (G band) are attributed to the vibration of sp2-bonded ordered graphite carbon atom in a two-dimensional hexagonal lattice. Besides, the peak at about 1340 cm−1 (D band) is related to the vibrations of sp3-bonded (dangling bonds) carbon atoms in the peripheral plane of the disordered graphite or glassy carbon.32–34 Therefore, the Raman results suggest that the synthesized N, P-CDs have aromatic graphitic structure with minor surface defects.
The functional groups and composed elements of the N, P-CDs were further revealed by the XPS measurements. As depicted in Fig. 4A, we can clearly observe the peaks of P2p, P2s, C1s, N1s and O1s at 133.1 eV, 189.4 eV, 284.6 eV, 400.3 eV and 531.0 eV, respectively, indicating that the N, P-CDs is primarily composed of four types of elements including C, P, O, N. Undoubtedly, the N and P mainly be resulted from the heteroatom doping with urea and phosphate reaction precursors. Additionally, from the high-resolution XPS spectra of N1s, P2p and C1s shown in Fig. 4B–D, we can see that each of them can be divided into multiple peaks, which are ascribed to multiple kinds of chemical bonds. For example, the C1s exists as the states of C–C/CC, C–N/C–O, C
O–N, as well both of the XPS spectra of N1s and P2p consist of three peaks, behaving three types of the existence states in the N, P-CDs.9,15,18
![]() | ||
Fig. 4 (A) The XPS survey spectrum (B) the C1s (C) N1s and (D) P2p XPS spectra of the synthesized N, P-CDs. |
The optical property of the N, P-CDs was initially investigated by performing the UV-vis absorption spectroscopy measurement. As displayed in Fig. 5, the absorption spectrum curve of N, P-CDs displays two peaks centered at 287 nm and 350 nm, respectively. As demonstrated in many previous works, the obvious absorption peak located at 287 nm likely be assigned to the π–π transition of sp2 CC in aromatic conjugate domains, which is the characteristic of synthesized CDs.35,36 Another peak at 350 nm may be associated with the n–π* transitions of C
O or others.27 Additionally, we can also observe from the inset of Fig. 5 that the N, P-CDs solution exhibits pale yellow color under sunlight and in contrary bright blue color irradiated with the UV light (365 nm), indicating that this N, P-CDs has significant photoluminescence property.
![]() | ||
Fig. 5 The absorption spectrum of the synthesized N, P-CDs, inset is the photographs of the N, P-CDs solution in ethanol irradiated under sunlight (yellow) and UV light (blue). |
Sequentially, the fluorescence property of the N, P-CDs was studied by the photoluminescence (PL) spectroscopy. As shown in Fig. 6, no matter what excitation wavelength was selected range from 260 nm to 390 nm (Fig. 6A), the N, P-CDs wholly displays obvious strong PL emission in the region of around 360 nm to 550 nm (Fig. 6B). Furthermore, with the excitation wavelength increasing from 260 nm to 390 nm, the PL emission peak of the N, P-CDs shows a tiny shift from 445 to 460 nm, confirming that the fluorescence properties of the N, P-CDs are depend on the surface states of itself rather than the morphology and particle size, and the of the N, P-CDs should be rather uniform.37,38 Fig. 6C provided the CIE 1931 chromaticity diagram of the N, P-CDs. After calculating from the PL spectrum data under the excitation wavelength of 340 nm, we can get the CIE chromaticity coordinate value of (0.1590, 0.0257), further indicating a blue fluorescence emission property of the synthesized CDs. Fig. 6D shows the PL emission spectra of the N, P-CDs multiply diluted by H2O. We can see that the PL emission intensity of the N, P-CDs presents an obvious increase at a lower dilution multiple and then decrease with the continuous increase of the multiple dilution, indicating that the concentration of N, P-CDs is also an important decisive factor for the PL emission performance.
For investigating the selectivity and sensitivity of the as-prepared N, P-CDs to metal ion, the PL spectroscopy of the synthesized N, P-CDs in the presence of various kinds of metal ions with a uniform concentration of 50 μmol L−1 was performed. The corresponding PL spectra and relative fluorescence peak intensity (F0/F) are shown in Fig. 7 A and Fig. 7B, respectively. As shown in Fig. 7A and B, all listed metal ions could result in a fluorescence quenching effect to the N, P-CDs. However, Fe3+ can lead to a more significant effect to the N, P-CDs on fluorescence quenching. The result demonstrated that the N, P-CDs has a higher selectivity for detection of Fe3+ than that of others. Fig. 7C intuitionally illustrates the emission color of N, P-CDs solution containing different metal ions with concentration of 50 μmol L−1 under 365 nm excited wavelength. After the addition of 50 μM of Fe3+ to the N, P-CDs, the fluorescence color of the N, P-CDs almost disappeared versus that of other metal ions, which indicates the high selectivity of as prepared N, P-CDs towards the detection of Fe3+ owing to the stronger affinity of Fe3+ than the other metal ions. Furthermore, with the aiming at checking the impact of complicated environments on fluorescence quenching of the N, P-CDs as the sensor of Fe3+, one category of mixed ions solution including Zn2+, Hg2+ and K+ with concentration of 50 μM for each of the ion were utilized to investigate the fluorescence emission of N, P-CDs with or without the presence of Fe3+. As can be seen in Fig. S1,† the coexisting ions, almost similar with the single ions, triggered a slight fluorescence quenching of the N, P-CDs, however, the fluorescence emission of the N, P-CDs were almost completely quenched with an identical level by the Fe3+ regardless of the presence of other selected coexisting ions. All of this demonstrated the successful application of fluorescence sensor of the synthesized N, P-CDs for Fe3+ detection with a relatively high selectivity.
To detailedly study the sensitivity of N, P-CDs to Fe3+, the fluorescence emission spectra of N, P-CDs with different concentration of Fe3+ ranging from 0 to 500 μmol L−1 was measured. As exhibited in Fig. 8A, the fluorescence intensity of the N, P-CDs gradually decrease with the increase of Fe3+ concentration, indicating that the Fe3+ ions can quenched the fluorescence of the N, P-CDs due to interactive chelation between Fe3+ and N, P-CDs. Fig. 8B displays the correlation relationship between relative fluorescence intensity (F0/F) of the N, P-CDs and varied Fe3+ concentration, where F0 and F are denoted as the fluorescence emission peak intensity of N, P-CDs without and with addition of Fe3+, which resulted from the above-mentioned fluorescence emission spectra in Fig. 8A. It well noted that the F0/F decreased with the increase of the Fe3+ ions concentration. Furthermore, as exhibited in the inset of Fig. 8B, a good linear relationship can be evidenced between the F0/F of the N, P-CDs and Fe3+ concentration in the range of 0–50 μmol L−1 with a correlation coefficient (R2) of 0.9932. And the lowest detection concentration of Fe3+ is 0.1 μmol L−1, which is not only lower than other reported values for Fe3+ detection by bio-mass based CDs, but also much lower than the guideline limit of Fe3+ concentration of 5.36 μmol L−1 proposed by World Health Organization (WHO).39–41 In addition, the fluorescence quenching of the N, P-CDs due to Fe3+ addition with various concentration is visible with the naked eye as shown in Fig. 8C. These results suggest that the as-prepared N, P-CDs can sensitively detect Fe3+ ions in water even with a very low concentrations (mere 0.1 μmol L−1) of. Fig. 8D shows the photoluminescence lifetime decay spectra of the optimal diluted N, P-CDs aqueous in the absence and presence of Fe3+. We can observe that the excition lifetime of the N, P-CDs under 340 nm excitation shows a significant reduction from 6.3 ns to 5.1 ns, further confirming that fluorescence of N, P-CDs can be indeed quenched by Fe3+ through a dynamic process.42–44 At last, we have performed the analytical application of the synthesized N, P-CDs for the detection of Fe3+ ion in tap water via standard addition recovery method for giving a more comprehensive assessment. It needs to be noted that the tap water was initially treated by 0.22 μm membrane for removing the insoluble particles. The obtained results were summarized in Table 1. Obviously, the recovery rate shows a slight variation from 98.6% to 103.3, verifying the feasibility of Fe3+ detection by the N, P-CDs sensor.
Water sample | Added Fe3+ (μmol L) | detected Fe3+ (μmol L) | Error (%) | Recovery (%) |
---|---|---|---|---|
Tap water | 0.152 | 0.157 | 3.29 | 103.29 |
0.233 | 0.240 | 3.00 | 103.00 | |
0.857 | 0.845 | −1.40 | 98.60 |
Based on the above systematic investigation, a possible mechanism was proposed to elucidate the fluorescence quenching mechanism of N, P-CDs by Fe3+ ion, which is shown in Fig. 9. It is well-known that the Fe3+ has half-filled 3d orbital which can act as the electron acceptor.33–35 On a contrary, the N, P-CDs has sorts of functional groups on the surface of N, P-CDs such as hydroxyl and amino, which can play as the electron donors. These will generate an effective coordination interaction between Fe3+ and N, P-CDs, which can make the excited electrons of the N, P-CDs easily transfer into the 3d orbital of Fe3+, finally leading to the fluorescence quenching to some extent and meanwhile the exciton lifetime reduction.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra06209j |
This journal is © The Royal Society of Chemistry 2020 |