Deb Pratim
Mukhopadhyay
a,
Domenik
Schleier
a,
Sara
Wirsing
a,
Jacqueline
Ramler
b,
Dustin
Kaiser
a,
Engelbert
Reusch
a,
Patrick
Hemberger
c,
Tobias
Preitschopf
a,
Ivo
Krummenacher
b,
Bernd
Engels
*a,
Ingo
Fischer
*a and
Crispin
Lichtenberg
*b
aInstitute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany. E-mail: bernd.engels@uni-wuerzburg.de; ingo.fischer@uni-wuerzburg.de
bInstitute of Inorganic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany. E-mail: crispin.lichtenberg@uni-wuerzburg.de
cLaboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland. E-mail: patrick.hemberger@psi.ch
First published on 3rd June 2020
We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe3 by controlled homolytic Bi–C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe3 to give [BiMe2]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol−1, which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me–BiMe2 bonds could be achieved at moderate temperatures (60–120 °C) in the condensed phase, suggesting that [BiMe2]• and BiMe are accessible as reactive intermediates under these conditions.
Here we report the generation and characterization of the first free (i.e. non-stabilized) organometallic bismuthinidene methylbismuth, BiMe, in a gas-phase reaction with implications for related reactions in condensed phase at moderate temperature. In addition, dimethylbismuth, [BiMe2]• was studied to determine the Bi–CH3 bond dissociation energy in BiMe3.
Scheme 2 Controlled, stepwise abstraction of CH3 radicals from 1 in the gas phase by flash pyrolysis. |
In a recent study, it was demonstrated that the abstraction of a single methyl group can be achieved by dissociative photoionization of 1, i.e. the Bi–C bond cleavage of the [BiMe3]•+ cation in the gas phase.23 Under these conditions, only a single methyl group was abstracted, yielding the cation [BiMe2]+. Here we attempt a thermally-induced, controlled and stepwise abstraction of methyl groups from neutral BiMe3. Thus, a sample of BiMe3 diluted in Ar was pyrolysed in a microreactor and analyzed by photoelectron–photoion coincidence spectroscopy (PEPICO) using synchrotron radiation.24 This method permits to record photoion mass-selected threshold photoelectron spectra (ms-TPE) for each species by correlating ions and electrons produced in a single photoionization event. Isomer-selective information is then obtained from an analysis of the photoelectron spectrum based on computations.
Fig. 1 shows mass spectra under various pyrolysis conditions. Without pyrolysis (top trace) only the parent ion 1•+ is visible, thus dissociative photoionization is irrelevant under our experimental conditions. Already at low pyrolysis power (center trace) a stepwise methyl loss down to atomic Bi occurs, associated with formation of 2 and one of the products 3–5. The small intensity of m/z = 239 ([Bi(CH3)2]+) compared to m/z = 224 ([BiCH3]•+) indicates that cleavage of the second methyl group is more facile than the first. In addition, Bi2 is visible at m/z = 418, due to dimerization of bismuth atoms (see ESI, Fig. S4†). In some experiments a further peak appeared at m/z = 478 and is most likely due to Me2Bi–BiMe2. Note that CH3 is not observed due to its ionization energy of 9.83891 eV.25,26 Traces of BiI from the synthesis are also present in the spectrum.
When the pyrolysis power is further increased (bottom trace) the precursor is fully converted and experimental conditions are suitable for studying the molecule formed after loss of two methyl groups. Three structures are possible for m/z = 224, the bismuthinidenes 3 (triplet)/4 (singlet) or the methylenebismuthane 5. Threshold photoelectron spectroscopy provides structural isomer-selective information through comparison with Franck–Condon-simulated or reference spectra. Fig. 2 represents the ms-TPE spectrum of a species with the composition BiCH3 at m/z = 224. The first major band at 7.88 eV is assigned to the adiabatic ionization energy (IEad). It is followed by several smaller bands that are ca. 40–50 meV apart. Simulations based on DFT and multi-reference calculations were carried out for 3, 4 and 5. While DFT often provides very accurate geometries and frequencies even for molecules with complicated electronic structures,48 it is in many cases less accurate for the computation of energy surfaces or excitation energies.49 Hence, the ωB97X-D350 functional was employed for frequency computations, but the multi-reference NEVPT251 approach was used to determine geometrical changes and to compute ionization energies as well as the energy difference between the two relevant states of the [BiCH3]•+ cation (vide infra). Both methods (DFT and multi-reference) were combined with a scalar relativistic approach and with the SARC-ZORA-TZVP basis set which allows for an all-electron treatment of bismuth52 (for computational details, see ESI†). Bismuthinidene 3 with a C3v symmetry and an X 3E (T0) triplet ground state is the lowest-energy structure (ΔE = 0 kJ mol−1). The computations on the NEVPT2-level show a very good agreement with the experimentally determined IE of 7.88 eV (IEcalc = 7.98 eV for the X+ 2A′′ ← X 3E transition (vide infra)), as compared to singlet bismuthinidene 4 (ΔE = +0.78 eV/+75 kJ mol−1; IEcalc = 7.21 eV) and methylenebismuthane 5 (ΔE = +0.91 eV/+88 kJ mol−1; IEcalc = 8.68 eV; for energy values obtained through DFT calculations see ESI†). This shows, that the ground state (electronic) structure of species with the sum formula ECH3 are fundamentally different, depending on the choice of the element E. For E = Bi the triplet bismuthinidene 3 is energetically favored and observed (vide supra), whereas for the lighter congeners (E = N, P), the formation of the methylene species HNCH2 and HPCH2 has been determined to be more favorable.27–32,53
Upon photoionization of 3, one electron is removed from either of the two degenerate SOMOs, which correspond in first approximation to the px and py orbital on the Bi center. The computations for the ionic ground state, [BiCH3]•+ (3•+), yielded a shortening of the Bi–C bond (from 2.27 Å in 3 to 2.21 Å in 3•+) and a deformation of the methyl group with a tilt angle of 4° relative to the Bi–C axis. This was ascribed to antibonding interactions between the unpaired electron and the bonding electrons of the two C–H groups, which are approximately aligned with the singly occupied p-type orbital of bismuth (Table S18†). This leads to a loss of the C3 axis and a reduction to Cs symmetry. As a consequence of this Jahn–Teller distortion, the 2E state in the C3v symmetric cation splits into a X+ 2A′′ and a A+ 2A′ component. The computations indicate an energy difference of only 50 meV between the two states at the geometry of the X+ 2A′′. Thus, transitions into both states contribute to the spectrum and have to be included in the simulation in Fig. 2 (blue curve). Transitions from the T0 ground state of neutral 3 into the X+ 2A′′ ionic ground state are given as grey bars, while transitions into the A+ 2A′ excited state are shown as red bars. In addition, there is a vibrational structure evident in the spectrum with a spacing of around 50 meV, including a hot band transition at 7.83 eV, which is assigned to the Bi–C stretching motion (corresponding to ν′′ ≈ 50 meV). Vibrational activity is expected due to the reduction of the Bi–C bond lengths in the cation by > 0.06 Å (see ESI† for all geometry parameters). Franck–Condon simulations based on computations of isomer 5 further support the triplet bismuthinidene 3 as the carrier of the spectrum (Fig. S3†). First, the computed IE of 5 is 0.80 eV higher than the experimental value, and second, a more pronounced vibrational progression with a maximum intensity for a transition into an excited vibrational state would be expected for 5. Thus a contribution of 5 to the spectrum can be ruled out.
The computed IE of 3 (for the lowest state of 3•+) and the relative energies for the two states of the cation 3•+ are in excellent agreement with the corresponding experimental data. This indicates that the neglected spin–orbit effects33 do not play a key role for the determination of the ionization energies, possibly because they are similar in magnitude for all involved states. While the experimental and calculated IEs nicely agree, deviations were observed in the shape of the spectra and were ascribed to the flatness of the potential energy surface (PES) of the cation. Two factors mainly contribute to the flatness of this PES: (i) the X+ 2A′′ state is threefold degenerate due to facile rotation around the Bi–C bond. (ii) The shape of the PES going from the equilibrium geometry of the X+ 2A′′ towards the equilibrium geometry of the A+ 2A′ state is expected to be non-harmonic. Efforts to obtain a better description of the surface were so far unsuccessful due to strong correlations of the various internal coordinates, so that high dimensional surfaces would be necessary for an appropriate description.
To gain additional information on the formation of BiMe (3) by stepwise abstraction of methyl groups from BiMe3 (1), an ms-TPE spectrum of [BiMe2]• (2) (m/z(2+) = 239) was recorded at a low pyrolysis temperature (Fig. 3; cf. Fig. 1). Simulations of the spectrum based on DFT calculations indicate C2v symmetry for both 2 and 2+ as well as a X+ 1A1 ← X 2B1 transition in [BiMe2]• (2). The first major band at 7.27 eV is assigned to the IE, in excellent agreement with the computed value of 7.35 eV at the NEVTP2 level of theory. A vibrational progression with a spacing of 60 meV is visible and is dominated by the symmetric Bi–C stretching mode in the cation. Additional torsional modes of the CH3 groups may lead to a broadening of the bands. While there is a good agreement between simulation and experiment, the vibrational intensities (including hot bands) are somewhat underestimated in the simulations. This indicates a slightly larger change of the Bi–C bond length upon ionization than the computed shortening of 0.05 Å (see ESI† for all geometry parameters).
Bond dissociation energies (BDEs) can be determined via thermochemical cycles that combine appearance energies (AE) and ionization energies. The zero Kelvin appearance energy AE0K for the abstraction of the first methyl radical from 1 has been determined with very high accuracy, AE0K(Bi(CH3)3, Bi(CH3)2+) = 9.445 ± 0.064 eV.23 According to computations, the methyl loss in the cation is a simple homolytic bond cleavage without a reverse barrier. Combined with the IE of 2, the Me2Bi–CH3 bond dissociation energy in 1, BDE(Me2Bi–CH3), can be derived:
BDE(Me2Bi–CH3) = AE0K(BiMe3, [BiMe2]•+) − IE([BiMe2]•) | (1) |
From eqn (1) a value of 210 ± 7 kJ mol−1 is obtained for BDE(Me2Bi–CH3). The bond dissociation energy of the first Bi–CH3 bond in BiMe3 (BDE(Me2Bi–CH3)) can be expected to be the highest of the three Bi–CH3 BDEs in this molecule34 and is thus crucial for any type of reaction initiation via Bi–CH3 homolysis. However, the value of BDE(Me2Bi–CH3) has never been determined explicitly in the primary literature. Based on previous investigations into the thermal decomposition of 1,34–36 an estimation of BDE(Me2Bi–CH3) can be made, which yields a value of 182 kJ mol−1 as the upper limit that would be possible for this parameter.37 Thus, our results substantially revise the bond dissociation energy of the first Bi–Me bond in 1, which is key to the radical chemistry of 1 and related bismuth compounds. The calculated isodesmic reaction provides a value of 226 kJ mol−1 in good agreement with the experimental findings.
Our correction of the BDE in a fundamentally important organometallic compound such as BiMe3 raised the question, whether homolytic Bi–C bond cleavage is possible at moderate reaction temperatures in the condensed phase, making this process relevant for synthetic chemistry under conventional experimental conditions. To test for methyl radical abstraction from BiMe3, a benzene solution of BiMe3 and the radical trap 6 was heated to 60 °C and subsequently analyzed by EPR spectroscopy (Fig. 4). Indeed, a resonance was detected with giso = 2.006 and a(14N) = 41.6 MHz, a(1H) = 9.63 MHz, a(13C) = 12.9 MHz, indicating the formation of 7 by methyl radical transfer.38,54,55
In order to gain further hints at the generation and subsequent trapping of BiMe in the condensed phase, neat BiMe3 was reacted with stoichiometric amounts of (PhS)2 at 120 °C (Fig. 5a). BiMe(SPh)2 (8)39–41 was isolated as the product of this reaction in 41% yield and fully characterized (Fig. 5b and c; for details see ESI†). Methane was detected in the headspace of the reaction by IR spectroscopy (Fig. S5†), suggesting the appearance of methyl radicals in this reaction.
Fig. 5 (a) Synthesis of BiMe(SPh)2 (8) from BiMe3 and (SPh)2 with methane as a detected by-product. (b and c) Molecular structure of 8 in the solid state with one formula unit shown in (b) and a cutout of the coordination polymer shown in (c). Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms and one set of split positions of disordered atoms are omitted for clarity. For detailed discussion of structural parameters see ESI.† Selected bond lengths (Å) and angles (°): Bi1–C1, 2.208(10); Bi1–S1, 2.736(2); Bi1–S2, 2.699(2); C1–Bi1–S1, 89.6(3); C1–Bi1–S2, 89.4(3); S1–Bi1–S2, 93.18(7). |
This – together with literature reports42 – supports the potential of BiMe to act as a transient reactive species in this reaction. The thioether MeSPh was also detected, suggesting that methyl radical attack at sulfur or σ-bond metathesis/disproportionation sequences may also be operative as a parallel reaction pathway.41 In the solid state, compound 8 forms a coordination polymer through bridging coordination modes of the thiolate ligands (Fig. 5c). This is a unique structural feature within the small number of literature-known compounds BiR(SR′)2 (R, R′ = aryl, alkyl; for details see ESI†).42–45
All calculations were performed with the ORCA program package, version 4.1.1 and 4.2.56
The spectroscopic experiments were carried out at the VUV beamline of the Swiss Light Source (SLS) at the Paul-Scherrer Institute, Villigen/CH. In most experiments the photon energy was scanned in 5 meV steps and calibrated using autoionization resonances in Ar. The ionization energies reported in the main paper are accurate to within ±20 meV and were corrected for the Stark-shift by the extraction field (8–9 meV). Note that in some experiments 10 meV steps were used. A detailed description of the beamline is given in the literature.47
1H NMR (500 MHz, C6D6): δ = 0.94 (s, 3H, CH3), 6.86 (dd, 2H, 3JHH = 7.4 Hz, 3JHH = 7.5 Hz, p-C6H5), 7.03 (t, 4H, 3JHH = 7.6 Hz, m-C6H5), 7.48 (d, 4H, 3JHH = 7.8 Hz, o-C6H5) ppm.
13C NMR (126 MHz, C6D6): δ = 40.40 (br, CH3), 127.29 (s, p-C6H5), 128.60 (s, m-C6H5), 135.62 (s, o-C6H5), 136.06 (s, ipso-C6H5) ppm.
Elemental analysis: anal. calc. for: [C13H13BiS2] (442.35 g mol−1): C 35.30, H 2.96, S 14.50; found: C: 35.12, H 2.90, S 14.40.
Footnote |
† Electronic supplementary information (ESI) available. CCDC 1991253. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d0sc02410d |
This journal is © The Royal Society of Chemistry 2020 |